
E-content of Operating System

An Operating System (OS) is an interface between a computer user and
computer hardware. An operating system is a software which performs all
the basic tasks like file management, memory management, process
management, handling input and output, and controlling peripheral devices
such as disk drives and printers.

Some popular Operating Systems include Linux Operating System,

Windows Operating System, VMS, OS/400, AIX, z/OS, etc.

Definition

An operating system is a program that acts as an interface between the
user and the computer hardware and controls the execution of all kinds of
programs.

Following are some of important functions of an operating System.

 Memory Management

 Processor Management

 Device Management

 File Management

 Security

 Control over system performance

 Job accounting

 Error detecting aids

 Coordination between other software and users

Memory Management

Memory management refers to management of Primary Memory or Main
Memory. Main memory is a large array of words or bytes where each word
or byte has its own address.

Main memory provides a fast storage that can be accessed directly by the
CPU. For a program to be executed, it must in the main memory. An
Operating System does the following activities for memory management −

 Keeps tracks of primary memory, i.e., what part of it are in use by
whom, what part are not in use.

 In multiprogramming, the OS decides which process will get memory
when and how much.

 Allocates the memory when a process requests it to do so.

 De-allocates the memory when a process no longer needs it or has
been terminated.

Processor Management

In multiprogramming environment, the OS decides which process gets the
processor when and for how much time. This function is called process
scheduling. An Operating System does the following activities for

processor management −

 Keeps tracks of processor and status of process. The program
responsible for this task is known as traffic controller.

 Allocates the processor (CPU) to a process.

 De-allocates processor when a process is no longer required.

Device Management

An Operating System manages device communication via their respective
drivers. It does the following activities for device management −

 Keeps tracks of all devices. Program responsible for this task is
known as the I/O controller.

 Decides which process gets the device when and for how much time.

 Allocates the device in the efficient way.

 De-allocates devices.

File Management

A file system is normally organized into directories for easy navigation and

usage. These directories may contain files and other directions.

An Operating System does the following activities for file management −

 Keeps track of information, location, uses, status etc. The collective
facilities are often known as file system.

 Decides who gets the resources.

 Allocates the resources.

 De-allocates the resources.

Other Important Activities

Following are some of the important activities that an Operating System
performs −

 Security − By means of password and similar other techniques, it

prevents unauthorized access to programs and data.

 Control over system performance − Recording delays between
request for a service and response from the system.

 Job accounting − Keeping track of time and resources used by

various jobs and users.

 Error detecting aids − Production of dumps, traces, error
messages, and other debugging and error detecting aids.

 Coordination between other softwares and users − Coordination
and assignment of compilers, interpreters, assemblers and other
software to the various users of the computer systems.

Types of Operating System:

Operating systems are there from the very first computer generation and
they keep evolving with time. Here, we will discuss some of the important

types of operating systems which are most commonly used.

Batch operating system

The users of a batch operating system do not interact with the computer
directly. Each user prepares his job on an off-line device like punch cards
and submits it to the computer operator. To speed up processing, jobs with
similar needs are batched together and run as a group. The programmers
leave their programs with the operator and the operator then sorts the
programs with similar requirements into batches.

The problems with Batch Systems are as follows −

 Lack of interaction between the user and the job.

 CPU is often idle, because the speed of the mechanical I/O devices is
slower than the CPU.

 Difficult to provide the desired priority.

Time-sharing operating systems

Time-sharing is a technique which enables many people, located at
various terminals, to use a particular computer system at the same time.
Time-sharing or multitasking is a logical extension of multiprogramming.
Processor's time which is shared among multiple users simultaneously is
termed as time-sharing.

The main difference between Multiprogrammed Batch Systems and Time-
Sharing Systems is that in case of Multiprogrammed batch systems, the
objective is to maximize processor use, whereas in Time-Sharing
Systems, the objective is to minimize response time.

Multiple jobs are executed by the CPU by switching between them, but the
switches occur so frequently. Thus, the user can receive an immediate
response. For example, in a transaction processing, the processor
executes each user program in a short burst or quantum of computation.
That is, if n users are present, then each user can get a time quantum.
When the user submits the command, the response time is in few seconds
at most.

The operating system uses CPU scheduling and multiprogramming to
provide each user with a small portion of a time. Computer systems that
were designed primarily as batch systems have been modified to time-
sharing systems.

Advantages of Timesharing operating systems are as follows −

 Provides the advantage of quick response.

 Avoids duplication of software.

 Reduces CPU idle time.

Disadvantages of Time-sharing operating systems are as follows −

 Problem of reliability.

 Question of security and integrity of user programs and data.

 Problem of data communication.

Distributed operating System

Distributed systems use multiple central processors to serve multiple real-
time applications and multiple users. Data processing jobs are distributed
among the processors accordingly.

The processors communicate with one another through various
communication lines (such as high-speed buses or telephone lines).
These are referred as loosely coupled systems or distributed systems.
Processors in a distributed system may vary in size and function. These
processors are referred as sites, nodes, computers, and so on.

The advantages of distributed systems are as follows −

 With resource sharing facility, a user at one site may be able to use
the resources available at another.

 Speedup the exchange of data with one another via electronic mail.

 If one site fails in a distributed system, the remaining sites can
potentially continue operating.

 Better service to the customers.

 Reduction of the load on the host computer.

 Reduction of delays in data processing.

Network operating System

A Network Operating System runs on a server and provides the server the
capability to manage data, users, groups, security, applications, and other
networking functions. The primary purpose of the network operating
system is to allow shared file and printer access among multiple
computers in a network, typically a local area network (LAN), a private
network or to other networks.

Examples of network operating systems include Microsoft Windows Server
2003, Microsoft Windows Server 2008, UNIX, Linux, Mac OS X, Novell
NetWare, and BSD.

The advantages of network operating systems are as follows −

 Centralized servers are highly stable.

 Security is server managed.

 Upgrades to new technologies and hardware can be easily integrated
into the system.

 Remote access to servers is possible from different locations and
types of systems.

The disadvantages of network operating systems are as follows −

 High cost of buying and running a server.

 Dependency on a central location for most operations.

 Regular maintenance and updates are required.

Real Time operating System

A real-time system is defined as a data processing system in which the
time interval required to process and respond to inputs is so small that it

controls the environment. The time taken by the system to respond to an
input and display of required updated information is termed as
the response time. So in this method, the response time is very less as

compared to online processing.

Real-time systems are used when there are rigid time requirements on the
operation of a processor or the flow of data and real-time systems can be
used as a control device in a dedicated application. A real-time operating
system must have well-defined, fixed time constraints, otherwise the
system will fail. For example, Scientific experiments, medical imaging
systems, industrial control systems, weapon systems, robots, air traffic
control systems, etc.

There are two types of real-time operating systems.

Hard real-time systems

Hard real-time systems guarantee that critical tasks complete on time. In
hard real-time systems, secondary storage is limited or missing and the
data is stored in ROM. In these systems, virtual memory is almost never
found.

Soft real-time systems

Soft real-time systems are less restrictive. A critical real-time task gets
priority over other tasks and retains the priority until it completes. Soft real-
time systems have limited utility than hard real-time systems. For example,
multimedia, virtual reality, Advanced Scientific Projects like undersea
exploration and planetary rovers, etc.

An Operating System provides services to both the users and to the
programs.

 It provides programs an environment to execute.

 It provides users the services to execute the programs in a
convenient manner.

Following are a few common services provided by an operating system −

 Program execution

 I/O operations

 File System manipulation

 Communication

 Error Detection

 Resource Allocation

 Protection

Program execution

Operating systems handle many kinds of activities from user programs to
system programs like printer spooler, name servers, file server, etc. Each
of these activities is encapsulated as a process.

A process includes the complete execution context (code to execute, data
to manipulate, registers, OS resources in use). Following are the major
activities of an operating system with respect to program management −

 Loads a program into memory.

 Executes the program.

 Handles program's execution.

 Provides a mechanism for process synchronization.

 Provides a mechanism for process communication.

 Provides a mechanism for deadlock handling.

I/O Operation

An I/O subsystem comprises of I/O devices and their corresponding driver
software. Drivers hide the peculiarities of specific hardware devices from
the users.

An Operating System manages the communication between user and
device drivers.

 I/O operation means read or write operation with any file or any
specific I/O device.

 Operating system provides the access to the required I/O device

when required.

File system manipulation

A file represents a collection of related information. Computers can store
files on the disk (secondary storage), for long-term storage purpose.
Examples of storage media include magnetic tape, magnetic disk and
optical disk drives like CD, DVD. Each of these media has its own
properties like speed, capacity, data transfer rate and data access
methods.

A file system is normally organized into directories for easy navigation and
usage. These directories may contain files and other directions. Following
are the major activities of an operating system with respect to file
management −

 Program needs to read a file or write a file.

 The operating system gives the permission to the program for
operation on file.

 Permission varies from read-only, read-write, denied and so on.

 Operating System provides an interface to the user to create/delete
files.

 Operating System provides an interface to the user to create/delete
directories.

 Operating System provides an interface to create the backup of file
system.

Communication

In case of distributed systems which are a collection of processors that do
not share memory, peripheral devices, or a clock, the operating system
manages communications between all the processes. Multiple processes
communicate with one another through communication lines in the
network.

The OS handles routing and connection strategies, and the problems of
contention and security. Following are the major activities of an operating
system with respect to communication −

 Two processes often require data to be transferred between them

 Both the processes can be on one computer or on different
computers, but are connected through a computer network.

 Communication may be implemented by two methods, either by
Shared Memory or by Message Passing.

Error handling

Errors can occur anytime and anywhere. An error may occur in CPU, in
I/O devices or in the memory hardware. Following are the major activities
of an operating system with respect to error handling −

 The OS constantly checks for possible errors.

 The OS takes an appropriate action to ensure correct and consistent
computing.

Resource Management

In case of multi-user or multi-tasking environment, resources such as main
memory, CPU cycles and files storage are to be allocated to each user or
job. Following are the major activities of an operating system with respect

to resource management −

 The OS manages all kinds of resources using schedulers.

 CPU scheduling algorithms are used for better utilization of CPU.

Protection

Considering a computer system having multiple users and concurrent
execution of multiple processes, the various processes must be protected
from each other's activities.

Protection refers to a mechanism or a way to control the access of
programs, processes, or users to the resources defined by a computer
system. Following are the major activities of an operating system with
respect to protection −

 The OS ensures that all access to system resources is controlled.

 The OS ensures that external I/O devices are protected from invalid
access attempts.

 The OS provides authentication features for each user by means of
passwords.

Batch processing

Batch processing is a technique in which an Operating System collects the
programs and data together in a batch before processing starts. An
operating system does the following activities related to batch processing
−

 The OS defines a job which has predefined sequence of commands,
programs and data as a single unit.

 The OS keeps a number a jobs in memory and executes them
without any manual information.

 Jobs are processed in the order of submission, i.e., first come first
served fashion.

 When a job completes its execution, its memory is released and the
output for the job gets copied into an output spool for later printing or
processing.

Advantages

 Batch processing takes much of the work of the operator to the
computer.

 Increased performance as a new job get started as soon as the
previous job is finished, without any manual intervention.

Disadvantages

 Difficult to debug program.

 A job could enter an infinite loop.

 Due to lack of protection scheme, one batch job can affect pending
jobs.

Multitasking

Multitasking is when multiple jobs are executed by the CPU
simultaneously by switching between them. Switches occur so frequently
that the users may interact with each program while it is running. An OS
does the following activities related to multitasking −

 The user gives instructions to the operating system or to a program
directly, and receives an immediate response.

 The OS handles multitasking in the way that it can handle multiple
operations/executes multiple programs at a time.

 Multitasking Operating Systems are also known as Time-sharing
systems.

 These Operating Systems were developed to provide interactive use
of a computer system at a reasonable cost.

 A time-shared operating system uses the concept of CPU scheduling
and multiprogramming to provide each user with a small portion of a
time-shared CPU.

 Each user has at least one separate program in memory.

 A program that is loaded into memory and is executing is commonly
referred to as a process.

 When a process executes, it typically executes for only a very short
time before it either finishes or needs to perform I/O.

 Since interactive I/O typically runs at slower speeds, it may take a
long time to complete. During this time, a CPU can be utilized by
another process.

 The operating system allows the users to share the computer
simultaneously. Since each action or command in a time-shared
system tends to be short, only a little CPU time is needed for each
user.

 As the system switches CPU rapidly from one user/program to the
next, each user is given the impression that he/she has his/her own
CPU, whereas actually one CPU is being shared among many
users.

Multiprogramming

Sharing the processor, when two or more programs reside in memory at
the same time, is referred as multiprogramming. Multiprogramming
assumes a single shared processor. Multiprogramming increases CPU
utilization by organizing jobs so that the CPU always has one to execute.

The following figure shows the memory layout for a multiprogramming
system.

An OS does the following activities related to multiprogramming.

 The operating system keeps several jobs in memory at a time.

 This set of jobs is a subset of the jobs kept in the job pool.

 The operating system picks and begins to execute one of the jobs in
the memory.

 Multiprogramming operating systems monitor the state of all active
programs and system resources using memory management
programs to ensures that the CPU is never idle, unless there are no
jobs to process.

Advantages

 High and efficient CPU utilization.

 User feels that many programs are allotted CPU almost
simultaneously.

Disadvantages

 CPU scheduling is required.

 To accommodate many jobs in memory, memory management is
required.

Interactivity

Interactivity refers to the ability of users to interact with a computer system.
An Operating system does the following activities related to interactivity −

 Provides the user an interface to interact with the system.

 Manages input devices to take inputs from the user. For example,
keyboard.

 Manages output devices to show outputs to the user. For example,
Monitor.

The response time of the OS needs to be short, since the user submits
and waits for the result.

Real Time System

Real-time systems are usually dedicated, embedded systems. An
operating system does the following activities related to real-time system
activity.

 In such systems, Operating Systems typically read from and react to

sensor data.

 The Operating system must guarantee response to events within
fixed periods of time to ensure correct performance.

Distributed Environment

A distributed environment refers to multiple independent CPUs or
processors in a computer system. An operating system does the following
activities related to distributed environment −

 The OS distributes computation logics among several physical
processors.

 The processors do not share memory or a clock. Instead, each
processor has its own local memory.

 The OS manages the communications between the processors. They
communicate with each other through various communication lines.

Spooling

Spooling is an acronym for simultaneous peripheral operations on line.
Spooling refers to putting data of various I/O jobs in a buffer. This buffer is
a special area in memory or hard disk which is accessible to I/O devices.

An operating system does the following activities related to distributed
environment −

 Handles I/O device data spooling as devices have different data
access rates.

 Maintains the spooling buffer which provides a waiting station where
data can rest while the slower device catches up.

 Maintains parallel computation because of spooling process as a
computer can perform I/O in parallel fashion. It becomes possible to
have the computer read data from a tape, write data to disk and to
write out to a tape printer while it is doing its computing task.

Advantages

 The spooling operation uses a disk as a very large buffer.

 Spooling is capable of overlapping I/O operation for one job with
processor operations for another job.

 Process

 A process is basically a program in execution. The execution of a
process must progress in a sequential fashion.

 A process is defined as an entity which represents the basic unit of
work to be implemented in the system.

 To put it in simple terms, we write our computer programs in a text
file and when we execute this program, it becomes a process which
performs all the tasks mentioned in the program.

 When a program is loaded into the memory and it becomes a
process, it can be divided into four sections ─ stack, heap, text and
data. The following image shows a simplified layout of a process
inside main memory −

S.N. Component & Description

1 Stack

The process Stack contains the temporary data such as method/function parameters,
return address and local variables.

2 Heap

This is dynamically allocated memory to a process during its run time.

3 Text

This includes the current activity represented by the value of Program Counter and
the contents of the processor's registers.

4 Data

This section contains the global and static variables.

 Program
 A program is a piece of code which may be a single line or millions of

lines. A computer program is usually written by a computer
programmer in a programming language. For example, here is a
simple program written in C programming language −

 #include <stdio.h>

 int main() {

 printf("Hello, World! \n");

 return 0;

 }

 A computer program is a collection of instructions that performs a
specific task when executed by a computer. When we compare a
program with a process, we can conclude that a process is a
dynamic instance of a computer program.

 A part of a computer program that performs a well-defined task is
known as an algorithm. A collection of computer programs, libraries
and related data are referred to as a software.

 Process Life Cycle
 When a process executes, it passes through different states. These

stages may differ in different operating systems, and the names of
these states are also not standardized.

 In general, a process can have one of the following five states at a
time.

S.N. State & Description

1 Start

This is the initial state when a process is first started/created.

2 Ready

The process is waiting to be assigned to a processor. Ready processes are waiting
to have the processor allocated to them by the operating system so that they can
run. Process may come into this state after Start state or while running it by but
interrupted by the scheduler to assign CPU to some other process.

3 Running

Once the process has been assigned to a processor by the OS scheduler, the
process state is set to running and the processor executes its instructions.

4 Waiting

Process moves into the waiting state if it needs to wait for a resource, such as
waiting for user input, or waiting for a file to become available.

5 Terminated or Exit

Once the process finishes its execution, or it is terminated by the operating system, it
is moved to the terminated state where it waits to be removed from main memory.

 Process Control Block (PCB)
 A Process Control Block is a data structure maintained by the

Operating System for every process. The PCB is identified by an
integer process ID (PID). A PCB keeps all the information needed to
keep track of a process as listed below in the table −

S.N. Information & Description

1 Process State

The current state of the process i.e., whether it is ready, running, waiting, or
whatever.

2 Process privileges

This is required to allow/disallow access to system resources.

3 Process ID

Unique identification for each of the process in the operating system.

4 Pointer

A pointer to parent process.

5 Program Counter

Program Counter is a pointer to the address of the next instruction to be executed for
this process.

6 CPU registers

Various CPU registers where process need to be stored for execution for running
state.

7 CPU Scheduling Information

Process priority and other scheduling information which is required to schedule the
process.

8 Memory management information

This includes the information of page table, memory limits, Segment table depending
on memory used by the operating system.

9 Accounting information

This includes the amount of CPU used for process execution, time limits, execution
ID etc.

10 IO status information

This includes a list of I/O devices allocated to the process.

 The architecture of a PCB is completely dependent on Operating
System and may contain different information in different operating
systems. Here is a simplified diagram of a PCB −

 The PCB is maintained for a process throughout its lifetime, and is

deleted once the process terminates.

Definition

The process scheduling is the activity of the process manager that handles
the removal of the running process from the CPU and the selection of
another process on the basis of a particular strategy.

Process scheduling is an essential part of a Multiprogramming operating
systems. Such operating systems allow more than one process to be
loaded into the executable memory at a time and the loaded process
shares the CPU using time multiplexing.

Process Scheduling Queues

The OS maintains all PCBs in Process Scheduling Queues. The OS
maintains a separate queue for each of the process states and PCBs of all
processes in the same execution state are placed in the same queue.

When the state of a process is changed, its PCB is unlinked from its
current queue and moved to its new state queue.

The Operating System maintains the following important process
scheduling queues −

 Job queue − This queue keeps all the processes in the system.

 Ready queue − This queue keeps a set of all processes residing in
main memory, ready and waiting to execute. A new process is

always put in this queue.

 Device queues − The processes which are blocked due to
unavailability of an I/O device constitute this queue.

The OS can use different policies to manage each queue (FIFO, Round
Robin, Priority, etc.). The OS scheduler determines how to move
processes between the ready and run queues which can only have one
entry per processor core on the system; in the above diagram, it has been
merged with the CPU.

Two-State Process Model

Two-state process model refers to running and non-running states which
are described below −

S.N. State & Description

1 Running

When a new process is created, it enters into the system as in the running state.

2 Not Running

Processes that are not running are kept in queue, waiting for their turn to execute.
Each entry in the queue is a pointer to a particular process. Queue is implemented
by using linked list. Use of dispatcher is as follows. When a process is interrupted,
that process is transferred in the waiting queue. If the process has completed or
aborted, the process is discarded. In either case, the dispatcher then selects a
process from the queue to execute.

Schedulers

Schedulers are special system software which handle process scheduling
in various ways. Their main task is to select the jobs to be submitted into
the system and to decide which process to run. Schedulers are of three
types −

 Long-Term Scheduler

 Short-Term Scheduler

 Medium-Term Scheduler

Long Term Scheduler

It is also called a job scheduler. A long-term scheduler determines which

programs are admitted to the system for processing. It selects processes
from the queue and loads them into memory for execution. Process loads
into the memory for CPU scheduling.

The primary objective of the job scheduler is to provide a balanced mix of

jobs, such as I/O bound and processor bound. It also controls the degree
of multiprogramming. If the degree of multiprogramming is stable, then the
average rate of process creation must be equal to the average departure
rate of processes leaving the system.

On some systems, the long-term scheduler may not be available or
minimal. Time-sharing operating systems have no long term scheduler.

When a process changes the state from new to ready, then there is use of
long-term scheduler.

Short Term Scheduler

It is also called as CPU scheduler. Its main objective is to increase
system performance in accordance with the chosen set of criteria. It is the
change of ready state to running state of the process. CPU scheduler
selects a process among the processes that are ready to execute and
allocates CPU to one of them.

S.N. Long-Term Scheduler Short-Term Scheduler Medium-Term Scheduler

1 It is a job scheduler It is a CPU scheduler It is a process swapping
scheduler.

2 Speed is lesser than short
term scheduler

Speed is fastest among
other two

Speed is in between both
short and long term
scheduler.

3 It controls the degree of
multiprogramming

It provides lesser control
over degree of
multiprogramming

It reduces the degree of
multiprogramming.

4 It is almost absent or
minimal in time sharing
system

It is also minimal in time
sharing system

It is a part of Time sharing
systems.

5 It selects processes from
pool and loads them into
memory for execution

It selects those
processes which are
ready to execute

It can re-introduce the
process into memory and
execution can be continued.

Short-term schedulers, also known as dispatchers, make the decision of
which process to execute next. Short-term schedulers are faster than long-
term schedulers.

Medium Term Scheduler

Medium-term scheduling is a part of swapping. It removes the processes
from the memory. It reduces the degree of multiprogramming. The
medium-term scheduler is in-charge of handling the swapped out-
processes.

A running process may become suspended if it makes an I/O request. A
suspended processes cannot make any progress towards completion. In
this condition, to remove the process from memory and make space for
other processes, the suspended process is moved to the secondary
storage. This process is called swapping, and the process is said to be
swapped out or rolled out. Swapping may be necessary to improve the
process mix.

Comparison among Scheduler

Context Switch

A context switch is the mechanism to store and restore the state or context
of a CPU in Process Control block so that a process execution can be
resumed from the same point at a later time. Using this technique, a
context switcher enables multiple processes to share a single CPU.
Context switching is an essential part of a multitasking operating system
features.

When the scheduler switches the CPU from executing one process to
execute another, the state from the current running process is stored into
the process control block. After this, the state for the process to run next is
loaded from its own PCB and used to set the PC, registers, etc. At that
point, the second process can start executing.

Context switches are computationally intensive since register and memory
state must be saved and restored. To avoid the amount of context
switching time, some hardware systems employ two or more sets of
processor registers. When the process is switched, the following
information is stored for later use.

 Program Counter

 Scheduling information

 Base and limit register value

 Currently used register

 Changed State

 I/O State information

 Accounting information

A Process Scheduler schedules different processes to be assigned to the
CPU based on particular scheduling algorithms. There are six popular
process scheduling algorithms which we are going to discuss in this
chapter −

 First-Come, First-Served (FCFS) Scheduling

 Shortest-Job-Next (SJN) Scheduling

 Priority Scheduling

 Shortest Remaining Time

 Round Robin(RR) Scheduling

 Multiple-Level Queues Scheduling

These algorithms are either non-preemptive or preemptive. Non-
preemptive algorithms are designed so that once a process enters the
running state, it cannot be preempted until it completes its allotted time,
whereas the preemptive scheduling is based on priority where a scheduler
may preempt a low priority running process anytime when a high priority
process enters into a ready state.

First Come First Serve (FCFS)

 Jobs are executed on first come, first serve basis.

 It is a non-preemptive, pre-emptive scheduling algorithm.

 Easy to understand and implement.

 Its implementation is based on FIFO queue.

 Poor in performance as average wait time is high.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 0 - 0 = 0

P1 5 - 1 = 4

P2 8 - 2 = 6

P3 16 - 3 = 13

Average Wait Time: (0+4+6+13) / 4 = 5.75

Shortest Job Next (SJN)

 This is also known as shortest job first, or SJF

 This is a non-preemptive, pre-emptive scheduling algorithm.

 Best approach to minimize waiting time.

 Easy to implement in Batch systems where required CPU time is
known in advance.

 Impossible to implement in interactive systems where required CPU
time is not known.

 The processer should know in advance how much time process will
take.

Given: Table of processes, and their Arrival time, Execution time

Process Arrival Time Execution Time Service Time

P0 0 5 0

P1 1 3 5

P2 2 8 14

P3 3 6 8

Waiting time of each process is as follows −

Process Waiting Time

P0 0 - 0 = 0

P1 5 - 1 = 4

P2 14 - 2 = 12

P3 8 - 3 = 5

Average Wait Time: (0 + 4 + 12 + 5)/4 = 21 / 4 = 5.25

Priority Based Scheduling

 Priority scheduling is a non-preemptive algorithm and one of the
most common scheduling algorithms in batch systems.

 Each process is assigned a priority. Process with highest priority is to
be executed first and so on.

 Processes with same priority are executed on first come first served
basis.

 Priority can be decided based on memory requirements, time
requirements or any other resource requirement.

Given: Table of processes, and their Arrival time, Execution time, and
priority. Here we are considering 1 is the lowest priority.

Process Arrival Time Execution Time Priority Service Time

P0 0 5 1 0

P1 1 3 2 11

P2 2 8 1 14

P3 3 6 3 5

Waiting time of each process is as follows −

Process Waiting Time

P0 0 - 0 = 0

P1 11 - 1 = 10

P2 14 - 2 = 12

P3 5 - 3 = 2

Average Wait Time: (0 + 10 + 12 + 2)/4 = 24 / 4 = 6

Shortest Remaining Time

 Shortest remaining time (SRT) is the preemptive version of the SJN
algorithm.

 The processor is allocated to the job closest to completion but it can
be preempted by a newer ready job with shorter time to completion.

 Impossible to implement in interactive systems where required CPU
time is not known.

 It is often used in batch environments where short jobs need to give
preference.

Round Robin Scheduling

 Round Robin is the preemptive process scheduling algorithm.

 Each process is provided a fix time to execute, it is called
a quantum.

 Once a process is executed for a given time period, it is preempted
and other process executes for a given time period.

 Context switching is used to save states of preempted processes.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 (0 - 0) + (12 - 3) = 9

P1 (3 - 1) = 2

P2 (6 - 2) + (14 - 9) + (20 - 17) = 12

P3 (9 - 3) + (17 - 12) = 11

Average Wait Time: (9+2+12+11) / 4 = 8.5

Multiple-Level Queues Scheduling

Multiple-level queues are not an independent scheduling algorithm. They
make use of other existing algorithms to group and schedule jobs with
common characteristics.

 Multiple queues are maintained for processes with common
characteristics.

 Each queue can have its own scheduling algorithms.

 Priorities are assigned to each queue.

For example, CPU-bound jobs can be scheduled in one queue and all
I/O-bound jobs in another queue. The Process Scheduler then
alternately selects jobs from each queue and assigns them to the CPU

based on the algorithm assigned to the queue. What is Thread?

A thread is a flow of execution through the process code, with its own
program counter that keeps track of which instruction to execute next,
system registers which hold its current working variables, and a stack
which contains the execution history.

A thread shares with its peer threads few information like code segment,
data segment and open files. When one thread alters a code segment
memory item, all other threads see that.

A thread is also called a lightweight process. Threads provide a way to
improve application performance through parallelism. Threads represent a
software approach to improving performance of operating system by
reducing the overhead thread is equivalent to a classical process.

Each thread belongs to exactly one process and no thread can exist
outside a process. Each thread represents a separate flow of control.
Threads have been successfully used in implementing network servers
and web server. They also provide a suitable foundation for parallel
execution of applications on shared memory multiprocessors. The
following figure shows the working of a single-threaded and a
multithreaded process.

Difference between Process and Thread

S.N. Process Thread

1 Process is heavy weight or resource intensive. Thread is

light

weight,

taking

lesser

resources

than a

process.

2 Process switching needs interaction with operating system. Thread

switching

does not

need to

interact

with

operating

system.

3 In multiple processing environments, each process executes the same

code but has its own memory and file resources.

All threads

can share

same set

of open

files, child

processes.

4 If one process is blocked, then no other process can execute until the

first process is unblocked.

While one

thread is

blocked

and

waiting, a

second

thread in

the same

task can

run.

5 Multiple processes without using threads use more resources. Multiple

threaded

processes

use fewer

resources.

6 In multiple processes each process operates independently of the

others.

One

thread can

read, write

or change

another

thread's

data.

Advantages of Thread

 Threads minimize the context switching time.

 Use of threads provides concurrency within a process.

 Efficient communication.

 It is more economical to create and context switch threads.

 Threads allow utilization of multiprocessor architectures to a greater
scale and efficiency.

Types of Thread

Threads are implemented in following two ways −

 User Level Threads − User managed threads.

 Kernel Level Threads − Operating System managed threads acting
on kernel, an operating system core.

User Level Threads

In this case, the thread management kernel is not aware of the existence
of threads. The thread library contains code for creating and destroying
threads, for passing message and data between threads, for scheduling
thread execution and for saving and restoring thread contexts. The
application starts with a single thread.

Advantages

 Thread switching does not require Kernel mode privileges.

 User level thread can run on any operating system.

 Scheduling can be application specific in the user level thread.

 User level threads are fast to create and manage.

Disadvantages

 In a typical operating system, most system calls are blocking.

 Multithreaded application cannot take advantage of multiprocessing.

Kernel Level Threads

In this case, thread management is done by the Kernel. There is no thread
management code in the application area. Kernel threads are supported
directly by the operating system. Any application can be programmed to

be multithreaded. All of the threads within an application are supported
within a single process.

The Kernel maintains context information for the process as a whole and
for individuals threads within the process. Scheduling by the Kernel is
done on a thread basis. The Kernel performs thread creation, scheduling
and management in Kernel space. Kernel threads are generally slower to
create and manage than the user threads.

Advantages

 Kernel can simultaneously schedule multiple threads from the same
process on multiple processes.

 If one thread in a process is blocked, the Kernel can schedule
another thread of the same process.

 Kernel routines themselves can be multithreaded.

Disadvantages

 Kernel threads are generally slower to create and manage than the
user threads.

 Transfer of control from one thread to another within the same
process requires a mode switch to the Kernel.

Multithreading Models

Some operating system provide a combined user level thread and Kernel
level thread facility. Solaris is a good example of this combined approach.
In a combined system, multiple threads within the same application can
run in parallel on multiple processors and a blocking system call need not
block the entire process. Multithreading models are three types

 Many to many relationship.

 Many to one relationship.

 One to one relationship.

Many to Many Model

The many-to-many model multiplexes any number of user threads onto an
equal or smaller number of kernel threads.

The following diagram shows the many-to-many threading model where 6
user level threads are multiplexing with 6 kernel level threads. In this
model, developers can create as many user threads as necessary and the
corresponding Kernel threads can run in parallel on a multiprocessor
machine. This model provides the best accuracy on concurrency and
when a thread performs a blocking system call, the kernel can schedule
another thread for execution.

Many to One Model

Many-to-one model maps many user level threads to one Kernel-level
thread. Thread management is done in user space by the thread library.
When thread makes a blocking system call, the entire process will be
blocked. Only one thread can access the Kernel at a time, so multiple
threads are unable to run in parallel on multiprocessors.

If the user-level thread libraries are implemented in the operating system
in such a way that the system does not support them, then the Kernel
threads use the many-to-one relationship modes.

One to One Model

There is one-to-one relationship of user-level thread to the kernel-level
thread. This model provides more concurrency than the many-to-one
model. It also allows another thread to run when a thread makes a
blocking system call. It supports multiple threads to execute in parallel on
microprocessors.

Disadvantage of this model is that creating user thread requires the
corresponding Kernel thread. OS/2, windows NT and windows 2000 use
one to one relationship model.

Difference between User-Level & Kernel-Level
Thread

S.N. User-Level Threads Kernel-Level Thread

1 User-level threads are faster to create and

manage.

Kernel-level threads are slower to

create and manage.

2 Implementation is by a thread library at the

user level.

Operating system supports creation

of Kernel threads.

3 User-level thread is generic and can run on

any operating system.

Kernel-level thread is specific to the

operating system.

4 Multi-threaded applications cannot take

advantage of multiprocessing.

Kernel routines themselves can be

multithreaded.

Process Address Space

The process address space is the set of logical addresses that a process

references in its code. For example, when 32-bit addressing is in use,
addresses can range from 0 to 0x7fffffff; that is, 2^31 possible numbers,
for a total theoretical size of 2 gigabytes.

The operating system takes care of mapping the logical addresses to
physical addresses at the time of memory allocation to the program. There
are three types of addresses used in a program before and after memory
is allocated −

S.N. Memory Addresses & Description

1 Symbolic addresses

The addresses used in a source code. The variable names, constants, and
instruction labels are the basic elements of the symbolic address space.

2 Relative addresses

At the time of compilation, a compiler converts symbolic addresses into relative
addresses.

3 Physical addresses

The loader generates these addresses at the time when a program is loaded into
main memory.

Virtual and physical addresses are the same in compile-time and load-time
address-binding schemes. Virtual and physical addresses differ in
execution-time address-binding scheme.

The set of all logical addresses generated by a program is referred to as
a logical address space. The set of all physical addresses corresponding
to these logical addresses is referred to as a physical address space.

The runtime mapping from virtual to physical address is done by the

memory management unit (MMU) which is a hardware device. MMU uses
following mechanism to convert virtual address to physical address.

 The value in the base register is added to every address generated
by a user process, which is treated as offset at the time it is sent to
memory. For example, if the base register value is 10000, then an
attempt by the user to use address location 100 will be dynamically
reallocated to location 10100.

 The user program deals with virtual addresses; it never sees the real
physical addresses.

Static vs Dynamic Loading

The choice between Static or Dynamic Loading is to be made at the time
of computer program being developed. If you have to load your program
statically, then at the time of compilation, the complete programs will be
compiled and linked without leaving any external program or module
dependency. The linker combines the object program with other necessary
object modules into an absolute program, which also includes logical
addresses.

If you are writing a Dynamically loaded program, then your compiler will
compile the program and for all the modules which you want to include
dynamically, only references will be provided and rest of the work will be
done at the time of execution.

At the time of loading, with static loading, the absolute program (and

data) is loaded into memory in order for execution to start.

If you are using dynamic loading, dynamic routines of the library are
stored on a disk in relocatable form and are loaded into memory only when
they are needed by the program.

Static vs Dynamic Linking

As explained above, when static linking is used, the linker combines all
other modules needed by a program into a single executable program to
avoid any runtime dependency.

When dynamic linking is used, it is not required to link the actual module or
library with the program, rather a reference to the dynamic module is
provided at the time of compilation and linking. Dynamic Link Libraries
(DLL) in Windows and Shared Objects in Unix are good examples of
dynamic libraries.

Swapping

Swapping is a mechanism in which a process can be swapped temporarily
out of main memory (or move) to secondary storage (disk) and make that
memory available to other processes. At some later time, the system
swaps back the process from the secondary storage to main memory.

Though performance is usually affected by swapping process but it helps
in running multiple and big processes in parallel and that's the
reason Swapping is also known as a technique for memory
compaction.

The total time taken by swapping process includes the time it takes to
move the entire process to a secondary disk and then to copy the process
back to memory, as well as the time the process takes to regain main
memory.

Let us assume that the user process is of size 2048KB and on a standard
hard disk where swapping will take place has a data transfer rate around 1
MB per second. The actual transfer of the 1000K process to or from
memory will take

2048KB / 1024KB per second

= 2 seconds

= 2000 milliseconds

Now considering in and out time, it will take complete 4000 milliseconds

plus other overhead where the process competes to regain main memory.

Memory Allocation

Main memory usually has two partitions −

 Low Memory − Operating system resides in this memory.

 High Memory − User processes are held in high memory.

Operating system uses the following memory allocation mechanism.

S.N. Memory Allocation & Description

1 Single-partition allocation

In this type of allocation, relocation-register scheme is used to protect user
processes from each other, and from changing operating-system code and data.
Relocation register contains value of smallest physical address whereas limit register
contains range of logical addresses. Each logical address must be less than the limit
register.

2 Multiple-partition allocation

In this type of allocation, main memory is divided into a number of fixed-sized
partitions where each partition should contain only one process. When a partition is
free, a process is selected from the input queue and is loaded into the free partition.
When the process terminates, the partition becomes available for another process.

Fragmentation

As processes are loaded and removed from memory, the free memory
space is broken into little pieces. It happens after sometimes that
processes cannot be allocated to memory blocks considering their small
size and memory blocks remains unused. This problem is known as
Fragmentation.

Fragmentation is of two types −

S.N. Fragmentation & Description

1 External fragmentation

Total memory space is enough to satisfy a request or to reside a process in it, but it

is not contiguous, so it cannot be used.

2 Internal fragmentation

Memory block assigned to process is bigger. Some portion of memory is left unused,
as it cannot be used by another process.

The following diagram shows how fragmentation can cause waste of
memory and a compaction technique can be used to create more free
memory out of fragmented memory −

External fragmentation can be reduced by compaction or shuffle memory
contents to place all free memory together in one large block. To make
compaction feasible, relocation should be dynamic.

The internal fragmentation can be reduced by effectively assigning the
smallest partition but large enough for the process.

Paging

A computer can address more memory than the amount physically
installed on the system. This extra memory is actually called virtual
memory and it is a section of a hard that's set up to emulate the
computer's RAM. Paging technique plays an important role in
implementing virtual memory.

Paging is a memory management technique in which process address
space is broken into blocks of the same size called pages (size is power
of 2, between 512 bytes and 8192 bytes). The size of the process is
measured in the number of pages.

Similarly, main memory is divided into small fixed-sized blocks of
(physical) memory called frames and the size of a frame is kept the same
as that of a page to have optimum utilization of the main memory and to
avoid external fragmentation.

Address Translation

Page address is called logical address and represented by page
number and the offset.

Logical Address = Page number + page offset

Frame address is called physical address and represented by a frame
number and the offset.

Physical Address = Frame number + page offset

A data structure called page map table is used to keep track of the
relation between a page of a process to a frame in physical memory.

When the system allocates a frame to any page, it translates this logical
address into a physical address and create entry into the page table to be
used throughout execution of the program.

When a process is to be executed, its corresponding pages are loaded
into any available memory frames. Suppose you have a program of 8Kb

but your memory can accommodate only 5Kb at a given point in time, then
the paging concept will come into picture. When a computer runs out of
RAM, the operating system (OS) will move idle or unwanted pages of
memory to secondary memory to free up RAM for other processes and
brings them back when needed by the program.

This process continues during the whole execution of the program where
the OS keeps removing idle pages from the main memory and write them
onto the secondary memory and bring them back when required by the
program.

Advantages and Disadvantages of Paging

Here is a list of advantages and disadvantages of paging −

 Paging reduces external fragmentation, but still suffer from internal
fragmentation.

 Paging is simple to implement and assumed as an efficient memory
management technique.

 Due to equal size of the pages and frames, swapping becomes very
easy.

 Page table requires extra memory space, so may not be good for a
system having small RAM.

Segmentation

Segmentation is a memory management technique in which each job is
divided into several segments of different sizes, one for each module that
contains pieces that perform related functions. Each segment is actually a
different logical address space of the program.

When a process is to be executed, its corresponding segmentation are
loaded into non-contiguous memory though every segment is loaded into a
contiguous block of available memory.

Segmentation memory management works very similar to paging but here
segments are of variable-length where as in paging pages are of fixed
size.

A program segment contains the program's main function, utility functions,
data structures, and so on. The operating system maintains a segment
map table for every process and a list of free memory blocks along with
segment numbers, their size and corresponding memory locations in main
memory. For each segment, the table stores the starting address of the
segment and the length of the segment. A reference to a memory location
includes a value that identifies a segment and an offset.

A computer can address more memory than the amount physically
installed on the system. This extra memory is actually called virtual
memory and it is a section of a hard disk that's set up to emulate the
computer's RAM.

The main visible advantage of this scheme is that programs can be larger
than physical memory. Virtual memory serves two purposes. First, it allows
us to extend the use of physical memory by using disk. Second, it allows
us to have memory protection, because each virtual address is translated
to a physical address.

Following are the situations, when entire program is not required to be
loaded fully in main memory.

 User written error handling routines are used only when an error
occurred in the data or computation.

 Certain options and features of a program may be used rarely.

 Many tables are assigned a fixed amount of address space even
though only a small amount of the table is actually used.

 The ability to execute a program that is only partially in memory
would counter many benefits.

 Less number of I/O would be needed to load or swap each user
program into memory.

 A program would no longer be constrained by the amount of physical

memory that is available.

 Each user program could take less physical memory, more programs
could be run the same time, with a corresponding increase in CPU
utilization and throughput.

Modern microprocessors intended for general-purpose use, a memory
management unit, or MMU, is built into the hardware. The MMU's job is to
translate virtual addresses into physical addresses. A basic example is
given below −

Virtual memory is commonly implemented by demand paging. It can also
be implemented in a segmentation system. Demand segmentation can
also be used to provide virtual memory.

Demand Paging

A demand paging system is quite similar to a paging system with
swapping where processes reside in secondary memory and pages are
loaded only on demand, not in advance. When a context switch occurs,
the operating system does not copy any of the old program’s pages out to
the disk or any of the new program’s pages into the main memory Instead,
it just begins executing the new program after loading the first page and
fetches that program’s pages as they are referenced.

While executing a program, if the program references a page which is not
available in the main memory because it was swapped out a little ago, the
processor treats this invalid memory reference as a page fault and

transfers control from the program to the operating system to demand the
page back into the memory.

Advantages

Following are the advantages of Demand Paging −

 Large virtual memory.

 More efficient use of memory.

 There is no limit on degree of multiprogramming.

Disadvantages

 Number of tables and the amount of processor overhead for handling
page interrupts are greater than in the case of the simple paged
management techniques.

Page Replacement Algorithm

Page replacement algorithms are the techniques using which an Operating
System decides which memory pages to swap out, write to disk when a
page of memory needs to be allocated. Paging happens whenever a page
fault occurs and a free page cannot be used for allocation purpose
accounting to reason that pages are not available or the number of free
pages is lower than required pages.

When the page that was selected for replacement and was paged out, is
referenced again, it has to read in from disk, and this requires for I/O
completion. This process determines the quality of the page replacement
algorithm: the lesser the time waiting for page-ins, the better is the
algorithm.

A page replacement algorithm looks at the limited information about
accessing the pages provided by hardware, and tries to select which
pages should be replaced to minimize the total number of page misses,
while balancing it with the costs of primary storage and processor time of
the algorithm itself. There are many different page replacement algorithms.
We evaluate an algorithm by running it on a particular string of memory
reference and computing the number of page faults,

Reference String

The string of memory references is called reference string. Reference
strings are generated artificially or by tracing a given system and recording
the address of each memory reference. The latter choice produces a large
number of data, where we note two things.

 For a given page size, we need to consider only the page number,
not the entire address.

 If we have a reference to a page p, then any immediately following
references to page p will never cause a page fault. Page p will be in

memory after the first reference; the immediately following
references will not fault.

 For example, consider the following sequence of addresses −
123,215,600,1234,76,96

 If page size is 100, then the reference string is 1,2,6,12,0,0

First In First Out (FIFO) algorithm

 Oldest page in main memory is the one which will be selected for
replacement.

 Easy to implement, keep a list, replace pages from the tail and add
new pages at the head.

Optimal Page algorithm

 An optimal page-replacement algorithm has the lowest page-fault
rate of all algorithms. An optimal page-replacement algorithm exists,
and has been called OPT or MIN.

 Replace the page that will not be used for the longest period of time.
Use the time when a page is to be used.

Least Recently Used (LRU) algorithm

 Page which has not been used for the longest time in main memory
is the one which will be selected for replacement.

 Easy to implement, keep a list, replace pages by looking back into
time.

Page Buffering algorithm

 To get a process start quickly, keep a pool of free frames.

 On page fault, select a page to be replaced.

 Write the new page in the frame of free pool, mark the page table and
restart the process.

 Now write the dirty page out of disk and place the frame holding

replaced page in free pool.

Least frequently Used(LFU) algorithm

 The page with the smallest count is the one which will be selected for
replacement.

 This algorithm suffers from the situation in which a page is used
heavily during the initial phase of a process, but then is never used
again.

Most frequently Used(MFU) algorithm

 This algorithm is based on the argument that the page with the
smallest count was probably just brought in and has yet to be used.

One of the important jobs of an Operating System is to manage various
I/O devices including mouse, keyboards, touch pad, disk drives, display
adapters, USB devices, Bit-mapped screen, LED, Analog-to-digital
converter, On/off switch, network connections, audio I/O, printers etc.

An I/O system is required to take an application I/O request and send it to
the physical device, then take whatever response comes back from the
device and send it to the application. I/O devices can be divided into two
categories −

 Block devices − A block device is one with which the driver
communicates by sending entire blocks of data. For example, Hard
disks, USB cameras, Disk-On-Key etc.

 Character devices − A character device is one with which the driver
communicates by sending and receiving single characters (bytes,
octets). For example, serial ports, parallel ports, sounds cards etc

Device Controllers

Device drivers are software modules that can be plugged into an OS to
handle a particular device. Operating System takes help from device
drivers to handle all I/O devices.

The Device Controller works like an interface between a device and a
device driver. I/O units (Keyboard, mouse, printer, etc.) typically consist of
a mechanical component and an electronic component where electronic
component is called the device controller.

There is always a device controller and a device driver for each device to
communicate with the Operating Systems. A device controller may be able
to handle multiple devices. As an interface its main task is to convert serial
bit stream to block of bytes, perform error correction as necessary.

Any device connected to the computer is connected by a plug and socket,
and the socket is connected to a device controller. Following is a model for
connecting the CPU, memory, controllers, and I/O devices where CPU and
device controllers all use a common bus for communication.

Synchronous vs asynchronous I/O

 Synchronous I/O − In this scheme CPU execution waits while I/O

proceeds

 Asynchronous I/O − I/O proceeds concurrently with CPU execution

Communication to I/O Devices

The CPU must have a way to pass information to and from an I/O device.
There are three approaches available to communicate with the CPU and
Device.

 Special Instruction I/O

 Memory-mapped I/O

 Direct memory access (DMA)

Special Instruction I/O

This uses CPU instructions that are specifically made for controlling I/O
devices. These instructions typically allow data to be sent to an I/O device
or read from an I/O device.

Memory-mapped I/O

When using memory-mapped I/O, the same address space is shared by
memory and I/O devices. The device is connected directly to certain main
memory locations so that I/O device can transfer block of data to/from
memory without going through CPU.

While using memory mapped IO, OS allocates buffer in memory and
informs I/O device to use that buffer to send data to the CPU. I/O device
operates asynchronously with CPU, interrupts CPU when finished.

The advantage to this method is that every instruction which can access
memory can be used to manipulate an I/O device. Memory mapped IO is
used for most high-speed I/O devices like disks, communication interfaces.

Direct Memory Access (DMA)

Slow devices like keyboards will generate an interrupt to the main CPU
after each byte is transferred. If a fast device such as a disk generated an
interrupt for each byte, the operating system would spend most of its time
handling these interrupts. So a typical computer uses direct memory
access (DMA) hardware to reduce this overhead.

Direct Memory Access (DMA) means CPU grants I/O module authority to
read from or write to memory without involvement. DMA module itself
controls exchange of data between main memory and the I/O device. CPU
is only involved at the beginning and end of the transfer and interrupted
only after entire block has been transferred.

Direct Memory Access needs a special hardware called DMA controller
(DMAC) that manages the data transfers and arbitrates access to the
system bus. The controllers are programmed with source and destination
pointers (where to read/write the data), counters to track the number of
transferred bytes, and settings, which includes I/O and memory types,
interrupts and states for the CPU cycles.

The operating system uses the DMA hardware as follows −

Step Description

1 Device driver is instructed to transfer disk data to a buffer address X.

2 Device driver then instruct disk controller to transfer data to buffer.

3 Disk controller starts DMA transfer.

4 Disk controller sends each byte to DMA controller.

5 DMA controller transfers bytes to buffer, increases the memory address, decreases

the counter C until C becomes zero.

6 When C becomes zero, DMA interrupts CPU to signal transfer completion.

Polling vs Interrupts I/O

A computer must have a way of detecting the arrival of any type of input.
There are two ways that this can happen, known
as polling and interrupts. Both of these techniques allow the processor to
deal with events that can happen at any time and that are not related to
the process it is currently running.

Polling I/O

Polling is the simplest way for an I/O device to communicate with the
processor. The process of periodically checking status of the device to see
if it is time for the next I/O operation, is called polling. The I/O device
simply puts the information in a Status register, and the processor must
come and get the information.

Most of the time, devices will not require attention and when one does it
will have to wait until it is next interrogated by the polling program. This is
an inefficient method and much of the processors time is wasted on
unnecessary polls.

Compare this method to a teacher continually asking every student in a
class, one after another, if they need help. Obviously the more efficient
method would be for a student to inform the teacher whenever they require
assistance.

Interrupts I/O

An alternative scheme for dealing with I/O is the interrupt-driven method.
An interrupt is a signal to the microprocessor from a device that requires
attention.

A device controller puts an interrupt signal on the bus when it needs
CPU’s attention when CPU receives an interrupt, It saves its current state

and invokes the appropriate interrupt handler using the interrupt vector
(addresses of OS routines to handle various events). When the
interrupting device has been dealt with, the CPU continues with its original
task as if it had never been interrupted.

I/O software is often organized in the following layers −

 User Level Libraries − This provides simple interface to the user
program to perform input and output. For example, stdio is a library

provided by C and C++ programming languages.

 Kernel Level Modules − This provides device driver to interact with
the device controller and device independent I/O modules used by
the device drivers.

 Hardware − This layer includes actual hardware and hardware
controller which interact with the device drivers and makes hardware
alive.

A key concept in the design of I/O software is that it should be device
independent where it should be possible to write programs that can access
any I/O device without having to specify the device in advance. For
example, a program that reads a file as input should be able to read a file
on a floppy disk, on a hard disk, or on a CD-ROM, without having to
modify the program for each different device.

Device Drivers

Device drivers are software modules that can be plugged into an OS to
handle a particular device. Operating System takes help from device
drivers to handle all I/O devices. Device drivers encapsulate device-
dependent code and implement a standard interface in such a way that
code contains device-specific register reads/writes. Device driver, is
generally written by the device's manufacturer and delivered along with the
device on a CD-ROM.

A device driver performs the following jobs −

 To accept request from the device independent software above to it.

 Interact with the device controller to take and give I/O and perform
required error handling

 Making sure that the request is executed successfully

How a device driver handles a request is as follows: Suppose a request
comes to read a block N. If the driver is idle at the time a request arrives, it
starts carrying out the request immediately. Otherwise, if the driver is
already busy with some other request, it places the new request in the
queue of pending requests.

Interrupt handlers

An interrupt handler, also known as an interrupt service routine or ISR, is a
piece of software or more specifically a callback function in an operating
system or more specifically in a device driver, whose execution is triggered
by the reception of an interrupt.

When the interrupt happens, the interrupt procedure does whatever it has
to in order to handle the interrupt, updates data structures and wakes up
process that was waiting for an interrupt to happen.

The interrupt mechanism accepts an address ─ a number that selects a
specific interrupt handling routine/function from a small set. In most
architectures, this address is an offset stored in a table called the interrupt
vector table. This vector contains the memory addresses of specialized
interrupt handlers.

Device-Independent I/O Software

The basic function of the device-independent software is to perform the I/O
functions that are common to all devices and to provide a uniform interface
to the user-level software. Though it is difficult to write completely device
independent software but we can write some modules which are common
among all the devices. Following is a list of functions of device-
independent I/O Software −

 Uniform interfacing for device drivers

 Device naming - Mnemonic names mapped to Major and Minor
device numbers

 Device protection

 Providing a device-independent block size

 Buffering because data coming off a device cannot be stored in final

destination.

 Storage allocation on block devices

 Allocation and releasing dedicated devices

 Error Reporting

User-Space I/O Software

These are the libraries which provide richer and simplified interface to
access the functionality of the kernel or ultimately interactive with the
device drivers. Most of the user-level I/O software consists of library
procedures with some exception like spooling system which is a way of
dealing with dedicated I/O devices in a multiprogramming system.

I/O Libraries (e.g., stdio) are in user-space to provide an interface to the
OS resident device-independent I/O SW. For example putchar(), getchar(),
printf() and scanf() are example of user level I/O library stdio available in C
programming.

Kernel I/O Subsystem

Kernel I/O Subsystem is responsible to provide many services related to
I/O. Following are some of the services provided.

 Scheduling − Kernel schedules a set of I/O requests to determine a
good order in which to execute them. When an application issues a
blocking I/O system call, the request is placed on the queue for that
device. The Kernel I/O scheduler rearranges the order of the queue
to improve the overall system efficiency and the average response
time experienced by the applications.

 Buffering − Kernel I/O Subsystem maintains a memory area known
as buffer that stores data while they are transferred between two

devices or between a device with an application operation. Buffering
is done to cope with a speed mismatch between the producer and
consumer of a data stream or to adapt between devices that have
different data transfer sizes.

 Caching − Kernel maintains cache memory which is region of fast
memory that holds copies of data. Access to the cached copy is
more efficient than access to the original.

 Spooling and Device Reservation − A spool is a buffer that holds

output for a device, such as a printer, that cannot accept interleaved

data streams. The spooling system copies the queued spool files to
the printer one at a time. In some operating systems, spooling is
managed by a system daemon process. In other operating systems,
it is handled by an in kernel thread.

 Error Handling − An operating system that uses protected memory
can guard against many kinds of hardware and application errors.

File

A file is a named collection of related information that is recorded on
secondary storage such as magnetic disks, magnetic tapes and optical
disks. In general, a file is a sequence of bits, bytes, lines or records whose
meaning is defined by the files creator and user.

File Structure

A File Structure should be according to a required format that the
operating system can understand.

 A file has a certain defined structure according to its type.

 A text file is a sequence of characters organized into lines.

 A source file is a sequence of procedures and functions.

 An object file is a sequence of bytes organized into blocks that are
understandable by the machine.

 When operating system defines different file structures, it also
contains the code to support these file structure. Unix, MS-DOS
support minimum number of file structure.

File Type

File type refers to the ability of the operating system to distinguish different
types of file such as text files source files and binary files etc. Many
operating systems support many types of files. Operating system like MS-
DOS and UNIX have the following types of files −

Ordinary files

 These are the files that contain user information.

 These may have text, databases or executable program.

 The user can apply various operations on such files like add, modify,
delete or even remove the entire file.

Directory files

 These files contain list of file names and other information related to
these files.

Special files

 These files are also known as device files.

 These files represent physical device like disks, terminals, printers,
networks, tape drive etc.

These files are of two types −

 Character special files − data is handled character by character as
in case of terminals or printers.

 Block special files − data is handled in blocks as in the case of
disks and tapes.

File Access Mechanisms

File access mechanism refers to the manner in which the records of a file
may be accessed. There are several ways to access files −

 Sequential access

 Direct/Random access

 Indexed sequential access

Sequential access

A sequential access is that in which the records are accessed in some
sequence, i.e., the information in the file is processed in order, one record
after the other. This access method is the most primitive one. Example:
Compilers usually access files in this fashion.

Direct/Random access

 Random access file organization provides, accessing the records
directly.

 Each record has its own address on the file with by the help of which
it can be directly accessed for reading or writing.

 The records need not be in any sequence within the file and they

need not be in adjacent locations on the storage medium.

Indexed sequential access

 This mechanism is built up on base of sequential access.

 An index is created for each file which contains pointers to various
blocks.

 Index is searched sequentially and its pointer is used to access the
file directly.

Space Allocation

Files are allocated disk spaces by operating system. Operating systems
deploy following three main ways to allocate disk space to files.

 Contiguous Allocation

 Linked Allocation

 Indexed Allocation

Contiguous Allocation

 Each file occupies a contiguous address space on disk.

 Assigned disk address is in linear order.

 Easy to implement.

 External fragmentation is a major issue with this type of allocation
technique.

Linked Allocation

 Each file carries a list of links to disk blocks.

 Directory contains link / pointer to first block of a file.

 No external fragmentation

 Effectively used in sequential access file.

 Inefficient in case of direct access file.

Indexed Allocation

 Provides solutions to problems of contiguous and linked allocation.

 A index block is created having all pointers to files.

 Each file has its own index block which stores the addresses of disk
space occupied by the file.

 Directory contains the addresses of index blocks of files.

Security refers to providing a protection system to computer system
resources such as CPU, memory, disk, software programs and most
importantly data/information stored in the computer system. If a computer
program is run by an unauthorized user, then he/she may cause severe
damage to computer or data stored in it. So a computer system must be
protected against unauthorized access, malicious access to system
memory, viruses, worms etc. We're going to discuss following topics in this
chapter.

 Authentication

 One Time passwords

 Program Threats

 System Threats

 Computer Security Classifications

Authentication

Authentication refers to identifying each user of the system and
associating the executing programs with those users. It is the responsibility
of the Operating System to create a protection system which ensures that
a user who is running a particular program is authentic. Operating
Systems generally identifies/authenticates users using following three
ways −

 Username / Password − User need to enter a registered username
and password with Operating system to login into the system.

 User card/key − User need to punch card in card slot, or enter key
generated by key generator in option provided by operating system
to login into the system.

 User attribute - fingerprint/ eye retina pattern/ signature − User
need to pass his/her attribute via designated input device used by

operating system to login into the system.

One Time passwords

One-time passwords provide additional security along with normal
authentication. In One-Time Password system, a unique password is
required every time user tries to login into the system. Once a one-time
password is used, then it cannot be used again. One-time password are
implemented in various ways.

 Random numbers − Users are provided cards having numbers

printed along with corresponding alphabets. System asks for
numbers corresponding to few alphabets randomly chosen.

 Secret key − User are provided a hardware device which can create
a secret id mapped with user id. System asks for such secret id
which is to be generated every time prior to login.

 Network password − Some commercial applications send one-time
passwords to user on registered mobile/ email which is required to
be entered prior to login.

Program Threats

Operating system's processes and kernel do the designated task as
instructed. If a user program made these process do malicious tasks, then
it is known as Program Threats. One of the common example of program

threat is a program installed in a computer which can store and send user
credentials via network to some hacker. Following is the list of some well-
known program threats.

 Trojan Horse − Such program traps user login credentials and

stores them to send to malicious user who can later on login to
computer and can access system resources.

 Trap Door − If a program which is designed to work as required,
have a security hole in its code and perform illegal action without
knowledge of user then it is called to have a trap door.

 Logic Bomb − Logic bomb is a situation when a program
misbehaves only when certain conditions met otherwise it works as a
genuine program. It is harder to detect.

 Virus − Virus as name suggest can replicate themselves on

computer system. They are highly dangerous and can modify/delete
user files, crash systems. A virus is generatlly a small code
embedded in a program. As user accesses the program, the virus
starts getting embedded in other files/ programs and can make
system unusable for user

System Threats

System threats refers to misuse of system services and network
connections to put user in trouble. System threats can be used to launch
program threats on a complete network called as program attack. System
threats creates such an environment that operating system resources/
user files are misused. Following is the list of some well-known system
threats.

 Worm − Worm is a process which can choked down a system

performance by using system resources to extreme levels. A Worm
process generates its multiple copies where each copy uses system
resources, prevents all other processes to get required resources.
Worms processes can even shut down an entire network.

 Port Scanning − Port scanning is a mechanism or means by which

a hacker can detects system vulnerabilities to make an attack on the
system.

 Denial of Service − Denial of service attacks normally prevents user
to make legitimate use of the system. For example, a user may not
be able to use internet if denial of service attacks browser's content
settings.

Computer Security Classifications

As per the U.S. Department of Defense Trusted Computer System's
Evaluation Criteria there are four security classifications in computer
systems: A, B, C, and D. This is widely used specifications to determine
and model the security of systems and of security solutions. Following is
the brief description of each classification.

S.N. Classification Type & Description

1 Type A

Highest Level. Uses formal design specifications and verification techniques. Grants
a high degree of assurance of process security.

2 Type B

Provides mandatory protection system. Have all the properties of a class C2 system.
Attaches a sensitivity label to each object. It is of three types.

 B1 − Maintains the security label of each object in the system. Label is used for
making decisions to access control.

 B2 − Extends the sensitivity labels to each system resource, such as storage
objects, supports covert channels and auditing of events.

 B3 − Allows creating lists or user groups for access-control to grant access or
revoke access to a given named object.

3 Type C

Provides protection and user accountability using audit capabilities. It is of two types.

 C1 − Incorporates controls so that users can protect their private information
and keep other users from accidentally reading / deleting their data. UNIX
versions are mostly Cl class.

 C2 − Adds an individual-level access control to the capabilities of a Cl level

system.

4 Type D

Lowest level. Minimum protection. MS-DOS, Window 3.1 fall in this category.

Linux is one of popular version of UNIX operating System. It is open
source as its source code is freely available. It is free to use. Linux was
designed considering UNIX compatibility. Its functionality list is quite
similar to that of UNIX.

Components of Linux System

Linux Operating System has primarily three components

 Kernel − Kernel is the core part of Linux. It is responsible for all
major activities of this operating system. It consists of various
modules and it interacts directly with the underlying hardware.
Kernel provides the required abstraction to hide low level hardware
details to system or application programs.

 System Library − System libraries are special functions or programs
using which application programs or system utilities accesses
Kernel's features. These libraries implement most of the
functionalities of the operating system and do not requires kernel
module's code access rights.

 System Utility − System Utility programs are responsible to do

specialized, individual level tasks.

Kernel Mode vs User Mode

Kernel component code executes in a special privileged mode
called kernel mode with full access to all resources of the computer. This
code represents a single process, executes in single address space and
do not require any context switch and hence is very efficient and fast.
Kernel runs each processes and provides system services to processes,
provides protected access to hardware to processes.

Support code which is not required to run in kernel mode is in System
Library. User programs and other system programs works in User
Mode which has no access to system hardware and kernel code. User
programs/ utilities use System libraries to access Kernel functions to get
system's low level tasks.

Basic Features

Following are some of the important features of Linux Operating System.

 Portable − Portability means software can works on different types
of hardware in same way. Linux kernel and application programs
supports their installation on any kind of hardware platform.

 Open Source − Linux source code is freely available and it is
community based development project. Multiple teams work in
collaboration to enhance the capability of Linux operating system
and it is continuously evolving.

 Multi-User − Linux is a multiuser system means multiple users can
access system resources like memory/ ram/ application programs at
same time.

 Multiprogramming − Linux is a multiprogramming system means
multiple applications can run at same time.

 Hierarchical File System − Linux provides a standard file structure
in which system files/ user files are arranged.

 Shell − Linux provides a special interpreter program which can be

used to execute commands of the operating system. It can be used
to do various types of operations, call application programs. etc.

 Security − Linux provides user security using authentication features
like password protection/ controlled access to specific files/
encryption of data.

Architecture

The following illustration shows the architecture of a Linux system −

The architecture of a Linux System consists of the following layers −

 Hardware layer − Hardware consists of all peripheral devices (RAM/

HDD/ CPU etc).

 Kernel − It is the core component of Operating System, interacts
directly with hardware, provides low level services to upper layer
components.

 Shell − An interface to kernel, hiding complexity of kernel's functions
from users. The shell takes commands from the user and executes
kernel's functions.

 Utilities − Utility programs that provide the user most of the

functionalities of an operating systems.

System Bootup

If you have a computer which has the Unix operating system installed in it,
then you simply need to turn on the system to make it live.

As soon as you turn on the system, it starts booting up and finally it
prompts you to log into the system, which is an activity to log into the
system and use it for your day-to-day activities.

Login Unix

When you first connect to a Unix system, you usually see a prompt such
as the following −

login:

To log in

 Have your userid (user identification) and password ready. Contact
your system administrator if you don't have these yet.

 Type your userid at the login prompt, then press ENTER. Your userid
is case-sensitive, so be sure you type it exactly as your system
administrator has instructed.

 Type your password at the password prompt, then press ENTER.

Your password is also case-sensitive.

 If you provide the correct userid and password, then you will be
allowed to enter into the system. Read the information and
messages that comes up on the screen, which is as follows.

login : amrood

amrood's password:

Last login: Sun Jun 14 09:32:32 2009 from 62.61.164.73

$

You will be provided with a command prompt (sometime called
the $ prompt) where you type all your commands. For example, to check
calendar, you need to type the cal command as follows −

$ cal

 June 2009

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6

 7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30

$

Change Password

All Unix systems require passwords to help ensure that your files and data

remain your own and that the system itself is secure from hackers and
crackers. Following are the steps to change your password −

Step 1 − To start, type password at the command prompt as shown below.

Step 2 − Enter your old password, the one you're currently using.

Step 3 − Type in your new password. Always keep your password
complex enough so that nobody can guess it. But make sure, you
remember it.

Step 4 − You must verify the password by typing it again.

$ passwd

Changing password for amrood

(current) Unix password:******

New UNIX password:*******

Retype new UNIX password:*******

passwd: all authentication tokens updated successfully

$

Note − We have added asterisk (*) here just to show the location where
you need to enter the current and new passwords otherwise at your
system. It does not show you any character when you type.

Listing Directories and Files

All data in Unix is organized into files. All files are organized into
directories. These directories are organized into a tree-like structure called
the filesystem.

You can use the ls command to list out all the files or directories available
in a directory. Following is the example of using ls command with -l option.

$ ls -l

total 19621

drwxrwxr-x 2 amrood amrood 4096 Dec 25 09:59 uml

-rw-rw-r-- 1 amrood amrood 5341 Dec 25 08:38

uml.jpg

drwxr-xr-x 2 amrood amrood 4096 Feb 15 2006 univ

drwxr-xr-x 2 root root 4096 Dec 9 2007

urlspedia

-rw-r--r-- 1 root root 276480 Dec 9 2007

urlspedia.tar

drwxr-xr-x 8 root root 4096 Nov 25 2007 usr

-rwxr-xr-x 1 root root 3192 Nov 25 2007

webthumb.php

-rw-rw-r-- 1 amrood amrood 20480 Nov 25 2007

webthumb.tar

-rw-rw-r-- 1 amrood amrood 5654 Aug 9 2007

yourfile.mid

-rw-rw-r-- 1 amrood amrood 166255 Aug 9 2007

yourfile.swf

$

Here entries starting with d..... represent directories. For example, uml,
univ and urlspedia are directories and rest of the entries are files.

Who Are You?

While you're logged into the system, you might be willing to know : Who
am I?

The easiest way to find out "who you are" is to enter
the whoami command −

$ whoami

 amrood

$

Try it on your system. This command lists the account name associated
with the current login. You can try who am i command as well to get

information about yourself.

Who is Logged in?

Sometime you might be interested to know who is logged in to the
computer at the same time.

There are three commands available to get you this information, based on
how much you wish to know about the other users: users, who, and w.

$ users

 amrood bablu qadir

$ who

amrood ttyp0 Oct 8 14:10 (limbo)

bablu ttyp2 Oct 4 09:08 (calliope)

qadir ttyp4 Oct 8 12:09 (dent)

$

Try the w command on your system to check the output. This lists down
information associated with the users logged in the system.

Logging Out

When you finish your session, you need to log out of the system. This is to
ensure that nobody else accesses your files.

To log out

 Just type the logout command at the command prompt, and the
system will clean up everything and break the connection.

System Shutdown

The most consistent way to shut down a Unix system properly via the
command line is to use one of the following commands −

Sr.No. Command & Description

1 halt

Brings the system down immediately

2 init 0

Powers off the system using predefined scripts to synchronize and clean up the
system prior to shutting down

3 init 6

Reboots the system by shutting it down completely and then restarting it

4 poweroff

Shuts down the system by powering off

5 reboot

Reboots the system

6 shutdown

Shuts down the system

You typically need to be the super user or root (the most privileged
account on a Unix system) to shut down the system. However, on some
standalone or personally-owned Unix boxes, an administrative user and
sometimes regular users can do so.

All data in Unix is organized into files. All files are organized into
directories. These directories are organized into a tree-like structure called
the filesystem.

When you work with Unix, one way or another, you spend most of your
time working with files. This tutorial will help you understand how to create
and remove files, copy and rename them, create links to them, etc.

In Unix, there are three basic types of files −

 Ordinary Files − An ordinary file is a file on the system that contains
data, text, or program instructions. In this tutorial, you look at working
with ordinary files.

 Directories − Directories store both special and ordinary files. For

users familiar with Windows or Mac OS, Unix directories are
equivalent to folders.

 Special Files − Some special files provide access to hardware such

as hard drives, CD-ROM drives, modems, and Ethernet adapters.

Other special files are similar to aliases or shortcuts and enable you
to access a single file using different names.

Listing Files

To list the files and directories stored in the current directory, use the
following command −

$ls

Here is the sample output of the above command −

$ls

bin hosts lib res.03

ch07 hw1 pub test_results

ch07.bak hw2 res.01 users

docs hw3 res.02 work

The command ls supports the -l option which would help you to get more
information about the listed files −

$ls -l

total 1962188

drwxrwxr-x 2 amrood amrood 4096 Dec 25 09:59 uml

-rw-rw-r-- 1 amrood amrood 5341 Dec 25 08:38

uml.jpg

drwxr-xr-x 2 amrood amrood 4096 Feb 15 2006 univ

drwxr-xr-x 2 root root 4096 Dec 9 2007

urlspedia

-rw-r--r-- 1 root root 276480 Dec 9 2007

urlspedia.tar

drwxr-xr-x 8 root root 4096 Nov 25 2007 usr

drwxr-xr-x 2 200 300 4096 Nov 25 2007

webthumb-1.01

-rwxr-xr-x 1 root root 3192 Nov 25 2007

webthumb.php

-rw-rw-r-- 1 amrood amrood 20480 Nov 25 2007

webthumb.tar

-rw-rw-r-- 1 amrood amrood 5654 Aug 9 2007

yourfile.mid

-rw-rw-r-- 1 amrood amrood 166255 Aug 9 2007

yourfile.swf

drwxr-xr-x 11 amrood amrood 4096 May 29 2007 zlib-

1.2.3

$

Here is the information about all the listed columns −

 First Column − Represents the file type and the permission given on
the file. Below is the description of all type of files.

 Second Column − Represents the number of memory blocks taken

by the file or directory.

 Third Column − Represents the owner of the file. This is the Unix
user who created this file.

 Fourth Column − Represents the group of the owner. Every Unix

user will have an associated group.

 Fifth Column − Represents the file size in bytes.

 Sixth Column − Represents the date and the time when this file was
created or modified for the last time.

 Seventh Column − Represents the file or the directory name.

In the ls -l listing example, every file line begins with a d, -, or l. These
characters indicate the type of the file that's listed.

Sr.No. Prefix & Description

1 -

Regular file, such as an ASCII text file, binary executable, or hard link.

2 b

Block special file. Block input/output device file such as a physical hard drive.

3 c

Character special file. Raw input/output device file such as a physical hard drive.

4 d

Directory file that contains a listing of other files and directories.

5 l

Symbolic link file. Links on any regular file.

6 p

Named pipe. A mechanism for interprocess communications.

7 s

Socket used for interprocess communication.

Metacharacters

Metacharacters have a special meaning in Unix. For example, * and ? are
metacharacters. We use * to match 0 or more characters, a question mark
(?) matches with a single character.

For Example −

$ls ch*.doc

Displays all the files, the names of which start with ch and end with .doc −

ch01-1.doc ch010.doc ch02.doc ch03-2.doc

ch04-1.doc ch040.doc ch05.doc ch06-2.doc

ch01-2.doc ch02-1.doc c

Here, * works as meta character which matches with any character. If you
want to display all the files ending with just .doc, then you can use the
following command −

$ls *.doc

Hidden Files

An invisible file is one, the first character of which is the dot or the period
character (.). Unix programs (including the shell) use most of these files to
store configuration information.

Some common examples of the hidden files include the files −

 .profile − The Bourne shell (sh) initialization script

 .kshrc − The Korn shell (ksh) initialization script

 .cshrc − The C shell (csh) initialization script

 .rhosts − The remote shell configuration file

To list the invisible files, specify the -a option to ls −

$ ls -a

. .profile docs lib test_results

.. .rhosts hosts pub users

.emacs bin hw1 res.01 work

.exrc ch07 hw2 res.02

.kshrc ch07.bak hw3 res.03

$

 Single dot (.) − This represents the current directory.

 Double dot (..) − This represents the parent directory.

Creating Files

You can use the vi editor to create ordinary files on any Unix system. You
simply need to give the following command −

$ vi filename

The above command will open a file with the given filename. Now, press
the key i to come into the edit mode. Once you are in the edit mode, you

can start writing your content in the file as in the following program −

This is unix file....I created it for the first time.....

I'm going to save this content in this file.

Once you are done with the program, follow these steps −

 Press the key esc to come out of the edit mode.

 Press two keys Shift + ZZ together to come out of the file

completely.

You will now have a file created with filename in the current directory.

$ vi filename

$

Editing Files

You can edit an existing file using the vi editor. We will discuss in short
how to open an existing file −

$ vi filename

Once the file is opened, you can come in the edit mode by pressing the
key i and then you can proceed by editing the file. If you want to move
here and there inside a file, then first you need to come out of the edit
mode by pressing the key Esc. After this, you can use the following keys
to move inside a file −

 l key to move to the right side.

 h key to move to the left side.

 k key to move upside in the file.

 j key to move downside in the file.

So using the above keys, you can position your cursor wherever you want
to edit. Once you are positioned, then you can use the i key to come in the
edit mode. Once you are done with the editing in your file, press Esc and
finally two keys Shift + ZZ together to come out of the file completely.

Display Content of a File

You can use the cat command to see the content of a file. Following is a
simple example to see the content of the above created file −

$ cat filename

This is unix file....I created it for the first time.....

I'm going to save this content in this file.

$

You can display the line numbers by using the -b option along with
the cat command as follows −

$ cat -b filename

1 This is unix file....I created it for the first

time.....

2 I'm going to save this content in this file.

$

Counting Words in a File

You can use the wc command to get a count of the total number of lines,

words, and characters contained in a file. Following is a simple example to
see the information about the file created above −

$ wc filename

2 19 103 filename

$

Here is the detail of all the four columns −

 First Column − Represents the total number of lines in the file.

 Second Column − Represents the total number of words in the file.

 Third Column − Represents the total number of bytes in the file.
This is the actual size of the file.

 Fourth Column − Represents the file name.

You can give multiple files and get information about those files at a time.
Following is simple syntax −

$ wc filename1 filename2 filename3

Copying Files

To make a copy of a file use the cp command. The basic syntax of the
command is −

$ cp source_file destination_file

Following is the example to create a copy of the existing file filename.

$ cp filename copyfile

$

You will now find one more file copyfile in your current directory. This file
will exactly be the same as the original file filename.

Renaming Files

To change the name of a file, use the mv command. Following is the basic

syntax −

$ mv old_file new_file

The following program will rename the existing file filename to newfile.

$ mv filename newfile

$

The mv command will move the existing file completely into the new file. In
this case, you will find only newfile in your current directory.

Deleting Files

To delete an existing file, use the rm command. Following is the basic
syntax −

$ rm filename

Caution − A file may contain useful information. It is always recommended
to be careful while using this Delete command. It is better to use the -
i option along with rm command.

Following is the example which shows how to completely remove the
existing file filename.

$ rm filename

$

You can remove multiple files at a time with the command given below −

$ rm filename1 filename2 filename3

$

Standard Unix Streams

Under normal circumstances, every Unix program has three streams (files)
opened for it when it starts up −

 stdin − This is referred to as the standard input and the associated
file descriptor is 0. This is also represented as STDIN. The Unix
program will read the default input from STDIN.

 stdout − This is referred to as the standard output and the
associated file descriptor is 1. This is also represented as STDOUT.
The Unix program will write the default output at STDOUT

 stderr − This is referred to as the standard error and the associated
file descriptor is 2. This is also represented as STDERR. The Unix
program will write all the error messages at STDERR.

Directories: A directory is a file the solo job of which is to store the file names

and the related information. All the files, whether ordinary, special, or
directory, are contained in directories.

Unix uses a hierarchical structure for organizing files and directories. This
structure is often referred to as a directory tree. The tree has a single root
node, the slash character (/), and all other directories are contained below

it.

Home Directory

The directory in which you find yourself when you first login is called your
home directory.

You will be doing much of your work in your home directory and
subdirectories that you'll be creating to organize your files.

You can go in your home directory anytime using the following command −

$cd ~

$

Here ~ indicates the home directory. Suppose you have to go in any other
user's home directory, use the following command −

$cd ~username

$

To go in your last directory, you can use the following command −

$cd -

$

Absolute/Relative Pathnames

Directories are arranged in a hierarchy with root (/) at the top. The position
of any file within the hierarchy is described by its pathname.

Elements of a pathname are separated by a /. A pathname is absolute, if it
is described in relation to root, thus absolute pathnames always begin with
a /.

Following are some examples of absolute filenames.

/etc/passwd

/users/sjones/chem/notes

/dev/rdsk/Os3

A pathname can also be relative to your current working directory. Relative
pathnames never begin with /. Relative to user amrood's home directory,
some pathnames might look like this −

chem/notes

personal/res

To determine where you are within the filesystem hierarchy at any time,
enter the command pwd to print the current working directory −

$pwd

/user0/home/amrood

$

Listing Directories

To list the files in a directory, you can use the following syntax −

$ls dirname

Following is the example to list all the files contained in /usr/local directory
−

$ls /usr/local

X11 bin gimp jikes sbin

ace doc include lib share

atalk etc info man ami

Creating Directories

We will now understand how to create directories. Directories are created
by the following command −

$mkdir dirname

Here, directory is the absolute or relative pathname of the directory you
want to create. For example, the command −

$mkdir mydir

$

Creates the directory mydir in the current directory. Here is another
example −

$mkdir /tmp/test-dir

$

This command creates the directory test-dir in the /tmp directory.
The mkdir command produces no output if it successfully creates the
requested directory.

If you give more than one directory on the command line, mkdir creates

each of the directories. For example, −

$mkdir docs pub

$

Creates the directories docs and pub under the current directory.

Creating Parent Directories

We will now understand how to create parent directories. Sometimes when
you want to create a directory, its parent directory or directories might not
exist. In this case, mkdir issues an error message as follows −

$mkdir /tmp/amrood/test

mkdir: Failed to make directory "/tmp/amrood/test";

No such file or directory

$

In such cases, you can specify the -p option to the mkdir command. It
creates all the necessary directories for you. For example −

$mkdir -p /tmp/amrood/test

$

The above command creates all the required parent directories.

Removing Directories

Directories can be deleted using the rmdir command as follows −

$rmdir dirname

$

Note − To remove a directory, make sure it is empty which means there

should not be any file or sub-directory inside this directory.

You can remove multiple directories at a time as follows −

$rmdir dirname1 dirname2 dirname3

$

The above command removes the directories dirname1, dirname2, and
dirname3, if they are empty. The rmdir command produces no output if it
is successful.

Changing Directories

You can use the cd command to do more than just change to a home
directory. You can use it to change to any directory by specifying a valid
absolute or relative path. The syntax is as given below −

$cd dirname

$

Here, dirname is the name of the directory that you want to change to. For
example, the command −

$cd /usr/local/bin

$

Changes to the directory /usr/local/bin. From this directory, you can cd to
the directory /usr/home/amrood using the following relative path −

$cd ../../home/amrood

$

Renaming Directories

The mv (move) command can also be used to rename a directory. The

syntax is as follows −

$mv olddir newdir

$

You can rename a directory mydir to yourdir as follows −

$mv mydir yourdir

$

The directories . (dot) and .. (dot dot)

The filename . (dot) represents the current working directory; and
the filename .. (dot dot) represents the directory one level above the
current working directory, often referred to as the parent directory.

If we enter the command to show a listing of the current working
directories/files and use the -a option to list all the files and the -l
option to provide the long listing, we will receive the following result.

$ls -la

drwxrwxr-x 4 teacher class 2048 Jul 16 17.56 .

drwxr-xr-x 60 root 1536 Jul 13 14:18

..

---------- 1 teacher class 4210 May 1 08:27

.profile

-rwxr-xr-x 1 teacher class 1948 May 12 13:42

memo

$

file permission and access modes in Unix. File ownership is an important
component of Unix that provides a secure method for storing files. Every
file in Unix has the following attributes −

 Owner permissions − The owner's permissions determine what
actions the owner of the file can perform on the file.

 Group permissions − The group's permissions determine what
actions a user, who is a member of the group that a file belongs to,
can perform on the file.

 Other (world) permissions − The permissions for others indicate
what action all other users can perform on the file.

The Permission Indicators

While using ls -l command, it displays various information related to file
permission as follows −

$ls -l /home/amrood

-rwxr-xr-- 1 amrood users 1024 Nov 2 00:10 myfile

drwxr-xr--- 1 amrood users 1024 Nov 2 00:10 mydir

Here, the first column represents different access modes, i.e., the
permission associated with a file or a directory.

The permissions are broken into groups of threes, and each position in the
group denotes a specific permission, in this order: read (r), write (w),
execute (x) −

 The first three characters (2-4) represent the permissions for the file's
owner. For example, -rwxr-xr-- represents that the owner has read

(r), write (w) and execute (x) permission.

 The second group of three characters (5-7) consists of the
permissions for the group to which the file belongs. For example, -
rwxr-xr-- represents that the group has read (r) and execute (x)
permission, but no write permission.

 The last group of three characters (8-10) represents the permissions
for everyone else. For example, -rwxr-xr-- represents that there
is read (r) only permission.

File Access Modes

The permissions of a file are the first line of defense in the security of a
Unix system. The basic building blocks of Unix permissions are
the read, write, and execute permissions, which have been described
below −

Read

Grants the capability to read, i.e., view the contents of the file.

Write

Grants the capability to modify, or remove the content of the file.

Execute

User with execute permissions can run a file as a program.

Directory Access Modes

Directory access modes are listed and organized in the same manner as
any other file. There are a few differences that need to be mentioned −

Read

Access to a directory means that the user can read the contents. The user
can look at the filenames inside the directory.

Write

Access means that the user can add or delete files from the directory.

Execute

Executing a directory doesn't really make sense, so think of this as a
traverse permission.

A user must have execute access to the bin directory in order to execute
the ls or the cd command.

Changing Permissions

To change the file or the directory permissions, you use
the chmod (change mode) command. There are two ways to use chmod

— the symbolic mode and the absolute mode.

Using chmod in Symbolic Mode

The easiest way for a beginner to modify file or directory permissions is to
use the symbolic mode. With symbolic permissions you can add, delete, or
specify the permission set you want by using the operators in the following
table.

Sr.No. Chmod operator & Description

1 +

Adds the designated permission(s) to a file or directory.

2 -

Removes the designated permission(s) from a file or directory.

3 =

Sets the designated permission(s).

Here's an example using testfile. Running ls -1 on the testfile shows that
the file's permissions are as follows −

$ls -l testfile

-rwxrwxr-- 1 amrood users 1024 Nov 2 00:10 testfile

Then each example chmod command from the preceding table is run on
the testfile, followed by ls –l, so you can see the permission changes −

$chmod o+wx testfile

$ls -l testfile

-rwxrwxrwx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod u-x testfile

Number Octal Permission Representation Ref

0 No permission ---

1 Execute permission --x

2 Write permission -w-

3 Execute and write permission: 1 (execute) + 2 (write) = 3 -wx

4 Read permission r--

5 Read and execute permission: 4 (read) + 1 (execute) = 5 r-x

$ls -l testfile

-rw-rwxrwx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod g = rx testfile

$ls -l testfile

-rw-r-xrwx 1 amrood users 1024 Nov 2 00:10 testfile

Here's how you can combine these commands on a single line −

$chmod o+wx,u-x,g = rx testfile

$ls -l testfile

-rw-r-xrwx 1 amrood users 1024 Nov 2 00:10 testfile

Using chmod with Absolute Permissions

The second way to modify permissions with the chmod command is to use
a number to specify each set of permissions for the file.

Each permission is assigned a value, as the following table shows, and the
total of each set of permissions provides a number for that set.

Here's an example using the testfile. Running ls -1 on the testfile shows
that the file's permissions are as follows −

$ls -l testfile

-rwxrwxr-- 1 amrood users 1024 Nov 2 00:10 testfile

Then each example chmod command from the preceding table is run on
the testfile, followed by ls –l, so you can see the permission changes −

$ chmod 755 testfile

$ls -l testfile

-rwxr-xr-x 1 amrood users 1024 Nov 2 00:10 testfile

$chmod 743 testfile

$ls -l testfile

-rwxr---wx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod 043 testfile

$ls -l testfile

----r---wx 1 amrood users 1024 Nov 2 00:10 testfile

6 Read and write permission: 4 (read) + 2 (write) = 6 rw-

7 All permissions: 4 (read) + 2 (write) + 1 (execute) = 7 rwx

Changing Owners and Groups

While creating an account on Unix, it assigns a owner ID and a group
ID to each user. All the permissions mentioned above are also assigned
based on the Owner and the Groups.

Two commands are available to change the owner and the group of files −

 chown − The chown command stands for "change owner" and is

used to change the owner of a file.

 chgrp − The chgrp command stands for "change group" and is
used to change the group of a file.

Changing Ownership

The chown command changes the ownership of a file. The basic syntax is
as follows −

$ chown user filelist

The value of the user can be either the name of a user on the system or
the user id (uid) of a user on the system.

The following example will help you understand the concept −

$ chown amrood testfile

$

Changes the owner of the given file to the user amrood.

NOTE − The super user, root, has the unrestricted capability to change the
ownership of any file but normal users can change the ownership of only
those files that they own.

Changing Group Ownership

The chgrp command changes the group ownership of a file. The basic
syntax is as follows −

$ chgrp group filelist

The value of group can be the name of a group on the system or the
group ID (GID) of a group on the system.

Following example helps you understand the concept −

$ chgrp special testfile

$

Changes the group of the given file to special group.

SUID and SGID File Permission

Often when a command is executed, it will have to be executed with
special privileges in order to accomplish its task.

As an example, when you change your password with
the passwd command, your new password is stored in the
file /etc/shadow.

As a regular user, you do not have read or write access to this file for

security reasons, but when you change your password, you need to have
the write permission to this file. This means that the passwd program has
to give you additional permissions so that you can write to the
file /etc/shadow.

Additional permissions are given to programs via a mechanism known as
the Set User ID (SUID) and Set Group ID (SGID) bits.

When you execute a program that has the SUID bit enabled, you inherit
the permissions of that program's owner. Programs that do not have the
SUID bit set are run with the permissions of the user who started the

program.

This is the case with SGID as well. Normally, programs execute with your
group permissions, but instead your group will be changed just for this
program to the group owner of the program.

The SUID and SGID bits will appear as the letter "s" if the permission is
available. The SUID "s" bit will be located in the permission bits where the
owners’ execute permission normally resides.

For example, the command −

$ ls -l /usr/bin/passwd

-r-sr-xr-x 1 root bin 19031 Feb 7 13:47

/usr/bin/passwd*

$

Shows that the SUID bit is set and that the command is owned by the root.
A capital letter S in the execute position instead of a lowercase s indicates

that the execute bit is not set.

If the sticky bit is enabled on the directory, files can only be removed if you
are one of the following users −

 The owner of the sticky directory

 The owner of the file being removed

 The super user, root

To set the SUID and SGID bits for any directory try the following command
−

$ chmod ug+s dirname

$ ls -l

drwsr-sr-x 2 root root 4096 Jun 19 06:45 dirname

$

Printing Files

Before you print a file on a Unix system, you may want to reformat it to
adjust the margins, highlight some words, and so on. Most files can also
be printed without reformatting, but the raw printout may not be that
appealing.

Many versions of Unix include two powerful text
formatters, nroff and troff.

The pr Command

The pr command does minor formatting of files on the terminal screen or
for a printer. For example, if you have a long list of names in a file, you can
format it onscreen into two or more columns.

Following is the syntax for the pr command −

pr option(s) filename(s)

how the vi Editor works in Unix. There are many ways to edit files in Unix.
Editing files using the screen-oriented text editor vi is one of the best
ways. This editor enables you to edit lines in context with other lines in the
file.

An improved version of the vi editor which is called the VIM has also been
made available now. Here, VIM stands for Vi IMproved.

vi is generally considered the de facto standard in Unix editors because −

 It's usually available on all the flavors of Unix system.

 Its implementations are very similar across the board.

 It requires very few resources.

 It is more user-friendly than other editors such as the ed or the ex.

You can use the vi editor to edit an existing file or to create a new file from
scratch. You can also use this editor to just read a text file.

Starting the vi Editor

The following table lists out the basic commands to use the vi editor −

Sr.No. Command & Description

1 vi filename

Creates a new file if it already does not exist, otherwise opens an existing file.

2 vi -R filename

Opens an existing file in the read-only mode.

3 view filename

Opens an existing file in the read-only mode.

Following is an example to create a new file testfile if it already does not

exist in the current working directory −

$vi testfile

The above command will generate the following output −

|

~

~

~

~

~

~

~

~

~

~

~

~

"testfile" [New File]

You will notice a tilde (~) on each line following the cursor. A tilde
represents an unused line. If a line does not begin with a tilde and appears
to be blank, there is a space, tab, newline, or some other non-viewable
character present.

You now have one open file to start working on. Before proceeding further,
let us understand a few important concepts.

Operation Modes

While working with the vi editor, we usually come across the following two
modes −

 Command mode − This mode enables you to perform administrative
tasks such as saving the files, executing the commands, moving the
cursor, cutting (yanking) and pasting the lines or words, as well as
finding and replacing. In this mode, whatever you type is interpreted
as a command.

 Insert mode − This mode enables you to insert text into the file.
Everything that's typed in this mode is interpreted as input and
placed in the file.

vi always starts in the command mode. To enter text, you must be in the
insert mode for which simply type i. To come out of the insert mode, press
the Esc key, which will take you back to the command mode.

Hint − If you are not sure which mode you are in, press the Esc key twice;
this will take you to the command mode. You open a file using the vi
editor. Start by typing some characters and then come to the command
mode to understand the difference.

Getting Out of vi

The command to quit out of vi is :q. Once in the command mode, type
colon, and 'q', followed by return. If your file has been modified in any way,
the editor will warn you of this, and not let you quit. To ignore this
message, the command to quit out of vi without saving is :q!. This lets you
exit vi without saving any of the changes.

The command to save the contents of the editor is :w. You can combine
the above command with the quit command, or use :wq and return.

The easiest way to save your changes and exit vi is with the ZZ
command. When you are in the command mode, type ZZ.
The ZZ command works the same way as the :wq command.

If you want to specify/state any particular name for the file, you can do so
by specifying it after the :w. For example, if you wanted to save the file you
were working on as another filename called filename2, you would type :w
filename2 and return.

Moving within a File

To move around within a file without affecting your text, you must be in the
command mode (press Esc twice). The following table lists out a few
commands you can use to move around one character at a time −

Sr.No. Command & Description

1 k

Moves the cursor up one line

2 j

Moves the cursor down one line

3 h

Moves the cursor to the left one character position

4 l

Moves the cursor to the right one character position

The following points need to be considered to move within a file −

 vi is case-sensitive. You need to pay attention to capitalization when
using the commands.

 Most commands in vi can be prefaced by the number of times you
want the action to occur. For example, 2j moves the cursor two lines
down the cursor location.

There are many other ways to move within a file in vi. Remember that you
must be in the command mode (press Esc twice). The following table lists
out a few commands to move around the file −

Given below is the list of commands to move around the file.

Sr.No. Command & Description

1
0 or |

Positions the cursor at the beginning of a line

2
$

Positions the cursor at the end of a line

3
w

Positions the cursor to the next word

4
b

Positions the cursor to the previous word

5
(

Positions the cursor to the beginning of the current sentence

6
)

Positions the cursor to the beginning of the next sentence

7
E

Moves to the end of the blank delimited word

8
{

Moves a paragraph back

9
}

Moves a paragraph forward

10
[[

Moves a section back

11
]]

Moves a section forward

12
n|

Moves to the column n in the current line

13
1G

Moves to the first line of the file

14
G

Moves to the last line of the file

15
nG

Moves to the nth line of the file

16
:n

Moves to the nth line of the file

17
fc

Moves forward to c

18
Fc

Moves back to c

19
H

Moves to the top of the screen

20
nH

Moves to the nth line from the top of the screen

21
M

Moves to the middle of the screen

22
L

Move to the bottom of the screen

23
nL

Moves to the nth line from the bottom of the screen

24
:x

Colon followed by a number would position the cursor on the line number represented by x

Control Commands

The following commands can be used with the Control Key to performs
functions as given in the table below −

Given below is the list of control commands.

Sr.No. Command & Description

1
CTRL+d

Moves forward 1/2 screen

2
CTRL+f

Moves forward one full screen

3
CTRL+u

Moves backward 1/2 screen

4
CTRL+b

Moves backward one full screen

5
CTRL+e

Moves the screen up one line

6
CTRL+y

Moves the screen down one line

7
CTRL+u

Moves the screen up 1/2 page

8
CTRL+d

Moves the screen down 1/2 page

9
CTRL+b

Moves the screen up one page

10
CTRL+f

Moves the screen down one page

11
CTRL+I

Redraws the screen

Editing Files

To edit the file, you need to be in the insert mode. There are many ways to
enter the insert mode from the command mode −

Sr.No. Command & Description

1 i

Inserts text before the current cursor location

2 I

Inserts text at the beginning of the current line

3 a

Inserts text after the current cursor location

4 A

Inserts text at the end of the current line

5 o

Creates a new line for text entry below the cursor location

6 O

Creates a new line for text entry above the cursor location

Deleting Characters

Here is a list of important commands, which can be used to delete

characters and lines in an open file −

Sr.No. Command & Description

1 x

Deletes the character under the cursor location

2 X

Deletes the character before the cursor location

3 dw

Deletes from the current cursor location to the next word

4 d^

Deletes from the current cursor position to the beginning of the line

5 d$

Deletes from the current cursor position to the end of the line

6 D

Deletes from the cursor position to the end of the current line

7 dd

Deletes the line the cursor is on

As mentioned above, most commands in vi can be prefaced by the
number of times you want the action to occur. For example, 2x deletes two
characters under the cursor location and 2dd deletes two lines the cursor

is on.

It is recommended that the commands are practiced before we proceed
further.

Change Commands

You also have the capability to change characters, words, or lines in vi
without deleting them. Here are the relevant commands –

Sr.No. Command & Description

1 cc

Removes the contents of the line, leaving you in insert mode.

2 cw

Changes the word the cursor is on from the cursor to the lowercase w end of the

word.

3 r

Replaces the character under the cursor. vi returns to the command mode after the

replacement is entered.

4 R

Overwrites multiple characters beginning with the character currently under the

cursor. You must use Esc to stop the overwriting.

5 s

Replaces the current character with the character you type. Afterward, you are left
in the insert mode.

6 S

Deletes the line the cursor is on and replaces it with the new text. After the new
text is entered, vi remains in the insert mode.

Copy and Paste Commands

You can copy lines or words from one place and then you can paste them
at another place using the following commands −

Sr.No. Command & Description

1 yy

Copies the current line.

2 yw

Copies the current word from the character the lowercase w cursor is on, until the
end of the word.

3 p

Puts the copied text after the cursor.

4 P

Puts the yanked text before the cursor.

Advanced Commands

There are some advanced commands that simplify day-to-day editing and
allow for more efficient use of vi −

Given below is the list advanced commands.

Sr.No. Command & Description

1
J

Joins the current line with the next one. A count of j commands join many lines.

2
<<

Shifts the current line to the left by one shift width.

3
>>

Shifts the current line to the right by one shift width.

4
~

Switches the case of the character under the cursor.

5
^G

Press Ctrl and G keys at the same time to show the current filename and the status.

6
U

Restores the current line to the state it was in before the cursor entered the line.

7
u

This helps undo the last change that was done in the file. Typing 'u' again will re-do the change.

8
J

Joins the current line with the next one. A count joins that many lines.

9
:f

Displays the current position in the file in % and the file name, the total number of file.

10
:f filename

Renames the current file to filename.

11
:w filename

Writes to file filename.

12
:e filename

Opens another file with filename.

13
:cd dirname

Changes the current working directory to dirname.

14
:e #

Toggles between two open files.

15
:n

In case you open multiple files using vi, use :n to go to the next file in the series.

16
:p

In case you open multiple files using vi, use :p to go to the previous file in the series.

17
:N

In case you open multiple files using vi, use :N to go to the previous file in the series.

18
:r file

Reads file and inserts it after the current line.

19
:nr file

Reads file and inserts it after the line n.

Word and Character Searching

The vi editor has two kinds of searches: string and character. For a string
search, the / and ? commands are used. When you start these
commands, the command just typed will be shown on the last line of the
screen, where you type the particular string to look for.

These two commands differ only in the direction where the search takes
place −

 The / command searches forwards (downwards) in the file.

 The ? command searches backwards (upwards) in the file.

The n and N commands repeat the previous search command in the same
or the opposite direction, respectively. Some characters have special
meanings. These characters must be preceded by a backslash (\) to be
included as part of the search expression.

Sr.No. Character &Description

1 ^

Searches at the beginning of the line (Use at the beginning of a search
expression).

2 .

Matches a single character.

3 *

Matches zero or more of the previous character.

4 $

End of the line (Use at the end of the search expression).

5 [

Starts a set of matching or non-matching expressions.

6 <

This is put in an expression escaped with the backslash to find the ending or the
beginning of a word.

7 >

This helps see the '<' character description above.

Sr.No. Command & Description

1 :set ic

Ignores the case when searching

2 :set ai

Sets autoindent

3 :set noai

Unsets autoindent

4 :set nu

Displays lines with line numbers on the left side

5 :set sw

Sets the width of a software tabstop. For example, you would set a shift width of 4
with this command — :set sw = 4

6 :set ws

If wrapscan is set, and the word is not found at the bottom of the file, it will try
searching for it at the beginning

7 :set wm

If this option has a value greater than zero, the editor will automatically "word
wrap". For example, to set the wrap margin to two characters, you would type
this: :set wm = 2

8 :set ro

Changes file type to "read only"

9 :set term

The character search searches within one line to find a character entered
after the command. The f and F commands search for a character on the
current line only. f searches forwards and F searches backwards and the
cursor moves to the position of the found character.

The t and T commands search for a character on the current line only, but
for t, the cursor moves to the position before the character,
and T searches the line backwards to the position after the character.

Set Commands

You can change the look and feel of your vi screen using the
following :set commands. Once you are in the command mode,
type :set followed by any of the following commands.

Running Commands

The vi has the capability to run commands from within the editor. To run a
command, you only need to go to the command mode and
type :! command.

For example, if you want to check whether a file exists before you try to
save your file with that filename, you can type :! ls and you will see the
output of ls on the screen.

You can press any key (or the command's escape sequence) to return to
your vi session.

Replacing Text

The substitution command (:s/) enables you to quickly replace words or

groups of words within your files. Following is the syntax to replace text −

Prints terminal type

10 :set bf

Discards control characters from input

:s/search/replace/g

The g stands for globally. The result of this command is that all
occurrences on the cursor's line are changed.

Important Points to Note

The following points will add to your success with vi −

 You must be in command mode to use the commands. (Press Esc
twice at any time to ensure that you are in command mode.)

 You must be careful with the commands. These are case-sensitive.

 You must be in insert mode to enter text.

	Definition
	Memory Management
	Processor Management
	Device Management
	File Management
	Other Important Activities
	Batch operating system
	Time-sharing operating systems
	Distributed operating System
	Network operating System
	Real Time operating System
	Hard real-time systems
	Soft real-time systems

	Program execution
	I/O Operation
	File system manipulation
	Communication
	Error handling
	Resource Management
	Protection
	Batch processing
	Advantages
	Disadvantages

	Multitasking
	Multiprogramming
	Advantages
	Disadvantages

	Interactivity
	Real Time System
	Distributed Environment
	Spooling
	Advantages

	 Process
	 Program
	 Process Life Cycle
	 Process Control Block (PCB)
	Definition (1)
	Process Scheduling Queues
	Two-State Process Model
	Schedulers
	Long Term Scheduler
	Short Term Scheduler
	Medium Term Scheduler
	Comparison among Scheduler
	Context Switch
	First Come First Serve (FCFS)
	Shortest Job Next (SJN)
	Priority Based Scheduling
	Shortest Remaining Time
	Round Robin Scheduling
	Multiple-Level Queues Scheduling
	For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound jobs in another queue. The Process Scheduler then alternately selects jobs from each queue and assigns them to the CPU based on the algorithm assigned to the queue. What is Th...
	Difference between Process and Thread
	Advantages of Thread
	Types of Thread
	User Level Threads
	Advantages
	Disadvantages

	Kernel Level Threads
	Advantages
	Disadvantages

	Multithreading Models
	Many to Many Model
	Many to One Model
	One to One Model
	Difference between User-Level & Kernel-Level Thread
	Process Address Space
	Static vs Dynamic Loading
	Static vs Dynamic Linking
	Swapping
	Memory Allocation
	Fragmentation
	Paging
	Address Translation
	Advantages and Disadvantages of Paging

	Segmentation
	Demand Paging
	Advantages
	Disadvantages

	Page Replacement Algorithm
	Reference String
	First In First Out (FIFO) algorithm
	Optimal Page algorithm
	Least Recently Used (LRU) algorithm
	Page Buffering algorithm
	Least frequently Used(LFU) algorithm
	Most frequently Used(MFU) algorithm
	Device Controllers
	Synchronous vs asynchronous I/O
	Communication to I/O Devices
	Special Instruction I/O
	Memory-mapped I/O

	Direct Memory Access (DMA)
	Polling vs Interrupts I/O
	Polling I/O
	Interrupts I/O

	Device Drivers
	Interrupt handlers
	Device-Independent I/O Software
	User-Space I/O Software
	Kernel I/O Subsystem
	File
	File Structure
	File Type
	Ordinary files
	Directory files
	Special files

	File Access Mechanisms
	Sequential access
	Direct/Random access
	Indexed sequential access

	Space Allocation
	Contiguous Allocation
	Linked Allocation
	Indexed Allocation

	Authentication
	One Time passwords
	Program Threats
	System Threats
	Computer Security Classifications
	Components of Linux System
	Kernel Mode vs User Mode
	Basic Features
	Architecture
	System Bootup
	Login Unix
	To log in
	Change Password
	Listing Directories and Files
	Who Are You?
	Who is Logged in?
	Logging Out
	System Shutdown

	Listing Files
	Metacharacters
	Hidden Files
	Creating Files
	Editing Files
	Display Content of a File
	Counting Words in a File
	Copying Files
	Renaming Files
	Deleting Files
	Standard Unix Streams
	Home Directory
	Absolute/Relative Pathnames
	Listing Directories
	Creating Directories
	Creating Parent Directories
	Removing Directories
	Changing Directories
	Renaming Directories
	The directories . (dot) and .. (dot dot)
	The Permission Indicators
	File Access Modes
	Read
	Write
	Execute

	Directory Access Modes
	Read
	Write
	Execute

	Changing Permissions
	Using chmod in Symbolic Mode

	Using chmod with Absolute Permissions
	Changing Owners and Groups
	Changing Ownership
	Changing Group Ownership
	SUID and SGID File Permission
	Printing Files
	The pr Command

	Starting the vi Editor
	Operation Modes
	Getting Out of vi
	Moving within a File
	Control Commands
	Editing Files (1)
	Deleting Characters
	Change Commands
	Copy and Paste Commands
	Advanced Commands
	Word and Character Searching
	Set Commands
	Running Commands
	Replacing Text
	Important Points to Note

